Journal of leukocyte biology
-
Inflammation is induced because of interplay among multiple signaling pathways and molecules during infectious and noninfectious tissue injuries. Crosstalk between Toll-like receptor-4 signaling and the neuronal apoptosis inhibitor protein, major histocompatibility class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome against pathogen- or damage-associated molecular patterns can cause exaggerated inflammation. We previously established that the Toll-like receptor-4-interacting SPA4 peptide suppresses gram-negative bacterial lipopolysaccharide (Toll-like receptor-4 ligand)-induced nuclear factor-κB and inflammatory response. ⋯ We also found that the SPA4 peptide inhibits mRNA and cellular protein levels of pro-interleukin-1β and NLRP3, formation of the NLRP3 inflammasome, caspase activity, and release of interleukin-1β. Furthermore, the SPA4 peptide treatment reduced the secreted levels of interleukin-1β from cells overexpressing Toll-like receptor-4 compared with cells expressing the dominant-negative form of Toll-like receptor-4. Together our results suggest that the SPA4 peptide exerts its anti-inflammatory activity by suppressing Toll-like receptor-4-priming of the NLRP3 inflammasome.
-
Recent comparisons of the murine and human transcriptome in health and disease have called into question the appropriateness of the use of murine models for human sepsis and trauma research. More specifically, researchers have debated the suitability of mouse models of severe inflammation that is intended for eventual translation to human patients. This mini-review outlines this recent research, as well as specifically defines the arguments for and against murine models of sepsis and trauma research based on these transcriptional studies. In addition, we review newer advancements in murine models of infection and injury and define what we envision as an evolving but viable future for murine studies of sepsis and trauma.
-
Severe septic syndromes deeply impair innate and adaptive immunity and are responsible for sepsis-induced immunosuppression. Although neutrophils represent the first line of defense against infection, little is known about their phenotype and functions a few days after sepsis, when the immunosuppressive phase is maximal (i.e., between d 3 and 8). The objective of the present study was to perform, for the first time, a global evaluation of neutrophil alterations in immunosuppressed septic patients (at d 3-4 and d 6-8) using phenotypic and functional studies. ⋯ These dysfunctions might participate in the deleterious role of sepsis-induced immunosuppression. The present results open new perspectives in the mechanisms favoring nosocomial infections after septic shock. They deserve to be further investigated in a larger clinical study and in animal models recapitulating these alterations.
-
θ-Defensins are pleiotropic, macrocyclic peptides that are expressed uniquely in Old World monkeys. The peptides are potent, broad-spectrum microbicides that also modulate inflammatory responses in vitro and in animal models of viral infection and polymicrobial sepsis. θ-Defensins suppress proinflammatory cytokine secretion by leukocytes stimulated with diverse Toll-like receptor (TLR) ligands. Studies were performed to delineate anti-inflammatory mechanisms of rhesus θ-defensin 1 (RTD-1), the most abundant θ-defensin isoform in macaque granulocytes. ⋯ RTD-1 inhibited IκBα degradation and p38 MAPK phosphorylation, and stimulated Akt phosphorylation in LPS-treated human primary monocytes and THP-1 macrophages. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) blocked RTD-1-stimulated Akt phosphorylation and reversed the suppression of NF-κB activation by the peptide. These studies indicate that the anti-inflammatory properties of θ-defensins are mediated by activation of the PI3K/Akt pathway and suppression of proinflammatory signals in immune-stimulated cells.