Vaccine
-
The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which has been an influenza vaccine safety concern since the swine flu pandemic of 1976, using a common protocol among high and middle-income countries. The primary objective of this project was to demonstrate the feasibility and utility of global collaboration in the assessment of vaccine safety, including countries both with and without an established infrastructure for vaccine active safety surveillance. A second objective, included a priori, was to assess the risk of GBS following pH1N1 vaccination. ⋯ This study demonstrates that international collaboration to evaluate serious outcomes using a common protocol is feasible. The significance and consistency of our findings support a conclusion of an association between 2009 H1N1 vaccination and GBS. Given the rarity of the event the relative incidence found does not provide evidence in contradiction to international recommendations for the continued use of influenza vaccines.
-
The recent emergence of severe human illness caused by avian-origin influenza A(H7N9) viruses in China has precipitated a global effort to rapidly develop and test vaccine candidates. To date, non-A(H7N9) H7 subtype influenza vaccine candidates have been poorly immunogenic and difficulties in production of A(H7N9) virus seed strains have been encountered. A candidate recombinant A(H7N9) vaccine consisting of full length, unmodified hemagglutinin (HA) and neuraminidase (NA) from the A/Anhui/1/2013 and the matrix 1 (M1) protein from the A/Indonesia/05/2005 (H5N1) were cloned into a baculovirus vector. ⋯ The non-homologous H7 vaccine induced both H7N3 and H7N9 HAI but no N9 anti-NA antibodies. A lethal murine wild-type A/Anhui/1/2013 (H7N9) challenge demonstrated 100% survival of all animals receiving A(H7N9) and A(H7N3) vaccine, versus 0% survival in A(H5N1) vaccine and placebo groups. Together, the data demonstrate that recombinant H7N9 vaccine can be rapidly developed that was immunogenic and efficacious supporting testing in man as a pandemic influenza H7N9 vaccine candidate.
-
Review
Modified Vaccinia virus Ankara: innate immune activation and induction of cellular signalling.
Attenuated poxviruses are currently under development as vaccine vectors against a number of diseases including, influenza, HIV, malaria and tuberculosis. Modified Vaccinia virus Ankara (MVA) is an attenuated, replication deficient vaccinia virus (VACV) strain which, similar to replication competent VACV, is highly immunogenic. The lack of productive viral replication further improves the safety profile of MVA as a vector, minimizing the potential for reversion to virulent forms particularly if used in immunocompromised individuals. ⋯ Moreover, due to the loss of various immunomodulatory factors MVA infection leads to rapid local immune responses, fulfilling a requirement of an adjuvant. In this review we take a look at the immunostimulatory properties of MVA, paying particular attention to the signalling of the innate immune system in response to MVA and VACV infection. Understanding the cellular and molecular mechanisms modulated by VACV will help in the future design and engineering of new vaccines and may provide insight into previously unknown mechanisms of dominant virus-host interactions.
-
The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.
-
Modified Vaccinia virus Ankara (MVA) is a tissue culture-derived, highly attenuated strain of vaccinia virus (VACV) exhibiting characteristic defective replication in cells from mammalian hosts. In the 1960s MVA was originally generated as a candidate virus for safer vaccination against smallpox. Now, MVA is widely used in experimental vaccine development targeting important infectious diseases and cancer. ⋯ Such vaccines are attractive candidates for delivering antigens from pathogens against which no, or no effective vaccine is available, including emerging infections caused by highly pathogenic influenza viruses, chikungunya virus, West Nile virus or zoonotic orthopoxviruses. Other directions are seeking valuable vaccines against highly complex diseases such as AIDS, malaria, and tuberculosis. Here, we highlight examples of MVA candidate vaccines against infectious diseases, and review the efforts made to assess both the efficacy of vaccination and immune correlates of protection in preclinical studies.