Vaccine
-
Review
A systematic review of interventions for reducing parental vaccine refusal and vaccine hesitancy.
Unvaccinated individuals pose a public health threat to communities. Research has identified many factors associated with parental vaccine refusal and hesitancy toward childhood and adolescent immunizations. However, data on the effectiveness of interventions to address parental refusal are limited. ⋯ Intervention categories and outcomes were evaluated for each body of evidence and confidence in overall estimates of effect was determined. There is limited evidence to guide implementation of effective strategies to deal with the emerging threat of parental vaccine refusal. There is a need for appropriately designed, executed and evaluated intervention studies to address this gap in knowledge.
-
Review
Modified Vaccinia virus Ankara: innate immune activation and induction of cellular signalling.
Attenuated poxviruses are currently under development as vaccine vectors against a number of diseases including, influenza, HIV, malaria and tuberculosis. Modified Vaccinia virus Ankara (MVA) is an attenuated, replication deficient vaccinia virus (VACV) strain which, similar to replication competent VACV, is highly immunogenic. The lack of productive viral replication further improves the safety profile of MVA as a vector, minimizing the potential for reversion to virulent forms particularly if used in immunocompromised individuals. ⋯ Moreover, due to the loss of various immunomodulatory factors MVA infection leads to rapid local immune responses, fulfilling a requirement of an adjuvant. In this review we take a look at the immunostimulatory properties of MVA, paying particular attention to the signalling of the innate immune system in response to MVA and VACV infection. Understanding the cellular and molecular mechanisms modulated by VACV will help in the future design and engineering of new vaccines and may provide insight into previously unknown mechanisms of dominant virus-host interactions.
-
The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.
-
Modified Vaccinia virus Ankara (MVA) is a tissue culture-derived, highly attenuated strain of vaccinia virus (VACV) exhibiting characteristic defective replication in cells from mammalian hosts. In the 1960s MVA was originally generated as a candidate virus for safer vaccination against smallpox. Now, MVA is widely used in experimental vaccine development targeting important infectious diseases and cancer. ⋯ Such vaccines are attractive candidates for delivering antigens from pathogens against which no, or no effective vaccine is available, including emerging infections caused by highly pathogenic influenza viruses, chikungunya virus, West Nile virus or zoonotic orthopoxviruses. Other directions are seeking valuable vaccines against highly complex diseases such as AIDS, malaria, and tuberculosis. Here, we highlight examples of MVA candidate vaccines against infectious diseases, and review the efforts made to assess both the efficacy of vaccination and immune correlates of protection in preclinical studies.
-
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. ⋯ Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.