Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
-
Hypoxia and high interstitial fluid pressure (IFP) have been shown to independently predict for nodal and distant metastases, as well as survival, in patients with cervix cancer. Using data from our prospective trial, we updated a cohort of patients treated with definitive radiation alone without chemotherapy, to assess the long-term prognostic impact of these microenvironmental features. ⋯ These results confirm our initial finding of the strong independent prognostic impact of IFP for relapse and survival in patients with cervix cancer. In contrast, the independent prognostic impact of HP(5) is of borderline significance and is limited to patients without imaging evidence of nodal metastases. However, these findings do not diminish the biologic significance of hypoxia, or the role of hypoxia and IFP as biomarkers of treatment response and as therapeutic targets.
-
Substantial reductions of radiation doses to heart and lung can be achieved using breathing adaptation of adjuvant radiotherapy following conservative surgery for breast cancer. The purpose of this study was to estimate the radiobiological implications after routine use of an end-inspiration gated treatment, and to compare the results with predictions based on pre-clinical CT-studies. ⋯ In a routine clinical practice involving adjuvant breast radiotherapy gated in an enhanced end-inspiration phase, remarkably low doses to organs at risk are observed. The corresponding cardiac and pulmonary complication risks are of the order of 1% and smaller.
-
Concurrent chemo-radiotherapy before surgery is standard treatment protocol for esophageal cancer with a less than 30% complete response due to resistance to therapy. The aim of this study was to determine whether molecular targeting approach using an inhibitor of cyclin-dependent kinases, flavopiridol, can help overcome the resistance to radiotherapy. ⋯ Flavopiridol treatment significantly enhanced SEG-1 cell radiosensitivity as well as the radioresponse of SEG-1 tumor xenografts. The underlying mechanisms are multiple, including cell cycle redistribution, apoptosis, and transcriptional inhibition. These preclinical data suggest that flavopiridol has the potential to increase the radioresponse of esophageal adenocarcinomas.