Journal of vascular surgery
-
Comparative Study
Failure of motor evoked potentials to predict neurologic outcome in experimental thoracic aortic occlusion.
Motor evoked potential monitoring was tested as an alternative to somatosensory evoked potential monitoring in evaluating spinal cord function during thoracic aortic occlusion in dogs. Twenty-seven animals underwent 60 minutes of cross-clamping of the proximal descending thoracic aorta with (n = 18) or without (n = 9) cerebrospinal fluid drainage. Spinal cord blood flow was measured with microspheres, and neurologic outcome was evaluated at 24 hours with Tarlov's scoring system. ⋯ Loss of motor evoked potentials recorded from the spinal cord had high specificity (100%) but a low sensitivity (46%) and was therefore not a reliable predictor of neurologic injury. Return of motor evoked potentials during reperfusion did not correlate with functional recovery. Motor evoked potentials stimulated in the cortex and recorded from the spinal cord had low overall accuracy (59%).(ABSTRACT TRUNCATED AT 250 WORDS)