Virus research
-
Susceptibility to severe viral infections was reported to be associated with genetic variants in immune response genes using case reports and GWAS studies. SARS-CoV-2 is an emergent viral disease that caused millions of COVID-19 cases all over the world. Around 15 % of cases are severe and some of them are accompanied by dysregulated immune system and cytokine storm. There is increasing evidence that severe manifestations of COVID-19 might be attributed to human genetic variants in genes related to immune deficiency and or inflammasome activation (cytokine storm). ⋯ This compilation represents a list of candidate genes that are likely to aid in explaining severe COVID-19 which are worthy of inclusion in gene panels and during meta-analysis of different variants in host genetics studies of COVID-19. In addition, we provide several hypotheses for severe COVID-19 and possible therapeutic targets.
-
Recent reports have shown that small and big felines could be infected by SARS-CoV-2, while other animals, like swines and mice, are apparently not susceptible to this infection. These findings raise the question of the role of cell factors associated with early stages of the viral infection in host selectivity. The cellular receptor for SARS-CoV-2 is the Angiotensin Converting Enzyme (ACE2). ⋯ On the other hand, TMPRSS2 and GRP78 are proteins with high homology in all the evaluated hosts. Thus, these proteins do not seem to play a role in host selectivity, suggesting that other factors may play a role in the non-permissivity in some of these hosts. These proteins represent however interesting cell targets that could be explored in order to control the virus replication in humans and in the intermediary hosts.
-
To investigate the clinical significance, viral shedding duration and viral load dynamics of positive fecal SARS-CoV-2 signals in COVID-19. ⋯ SARS-CoV-2 RNA in stool specimens was associated with a milder condition and better recovery of chest CT results while the median duration of SARS-CoV-2 RNA persistence was significantly longer in fecal samples than in oropharyngeal swabs. The fecal viral load easily reached a high level and rebounded even though respiratory signals became negative.
-
Innate and adaptive immune responses have been evaluated in infected patients with COVID-19. The severity of the disease has been supposed to be associated with some profile not reported with other bacterial and viral pneumonia. We proposed a study in patients with moderate to severe COVID-19 infection to evaluate the interleukin patterns and its role as prognosis factors. ⋯ Our results suggest that the activation of the host immune response between Th1 or Th2 in COVID-19 infection may be related to the final result between discharge or death. This implies an attempt to control cytokines, such as IFN-γ, with combined therapies for clinical treatment.
-
Comparative Study
Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China late in 2019. Nine months later (Sept. 23, 2020), the virus has infected > 31.6 million people around the world and caused > 971.000 (3.07 %) fatalities in 220 countries and territories. Research on the genetics of the SARS-CoV-2 genome, its mutants and their penetrance can aid future defense strategies. ⋯ The increasing frequency of SARS-CoV-2 mutation hotspots might select for dangerous viral pathogens. Alternatively, in a 29.900 nucleotide-genome, there might be a limit to the number of mutable and selectable sites which, when exhausted, could prove disadvantageous to viral survival. The speed, at which novel SARS-CoV-2 mutants are selected and dispersed around the world, could pose problems for the development of vaccines and therapeutics.