Neuroscience research
-
Neuroscience research · Apr 2002
Reciprocal age-related changes in GAP-43/B-50, substance P and calcitonin gene-related peptide (CGRP) expression in rat primary sensory neurones and their terminals in the dorsal horn of the spinal cord and subintima of the knee synovium.
Age-related changes in the expression of the growth associated protein GAP-43/B-50, and the neuropeptides substance P and calcitonin gene-related peptide (CGRP) were investigated in the sensory neurones of rat dorsal root ganglia, dorsal horns of the spinal cord and subintimal knee synovium. The two time-points studied were 2 months (young adults) and 14-month (aged)-old Sprague Dawley rats. Dorsal root ganglia: In young adults, 40 and 35% of the L4-L5 dorsal root ganglion neurones were positive for GAP-43/B-50 with a 1.5 fold increase in frequency in aged rats at the L5 ganglion. ⋯ Dorsal horn of the spinal cord: there was a 1.3 fold decrease of substance P at L5 level and a 1.3 and 1.5 fold decrease of CGRP at L4-L5 levels in aged rats, respectively. Synovial membrane: There was a 2.3 fold increase in GAP-43/B-50 and a 2.5 fold decrease of CGRP with no changes in substance P expression. These results indicate that (i) primary sensory neurones undergo age-related changes already in early stages of aging, (ii) aging may result in a reduction of substance P and CGRP axonal transport, and (iii) reduced numbers of CGRP containing synovial perivascular fibres may imply a deficient regulation of the synovial microvasculature and therefore metabolic homeostasis of the joint in aged subjects.