Neuroscience research
-
Neuroscience research · Aug 2006
Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
In the visual cortex, pinwheel centers, which appear as point singularities in orientation maps, are likely to be found at the centers of ocular dominance columns in normal cats and monkeys. To elucidate the mechanism underlying the geometrical relationship, we performed computer simulation based on our correlation-based self-organization model. The simulation showed that pinwheel centers tended to be located at the ocular dominance centers at higher correlations of activities between the left- and right-eye specific pathways, whereas they tended to appear along the borders of ocular dominance columns at lower correlations. ⋯ The between-eye activity correlation in dark-reared cats is expected to be lower than that in normal cats due to the lack of common visual input in the two eyes. The statistical analysis of experimental data showed that while more pinwheel centers tended to be located in the center subregion of ocular dominance columns than in the border subregion in the normal cats, a weak tendency in the opposite direction was found in the dark-reared cats. Based on the consistent results from the model and experiment, it is suggested that the activity correlation between the left- and right-eye specific pathways has influence on the establishment of geometrical relationship in the cortical representation between orientation preference and ocular dominance.
-
Neuroscience research · Aug 2006
The lumbar spinal cord glial cells actively modulate subcutaneous formalin induced hyperalgesia in the rat.
We investigated the response and relationship of glial cells and neurons in lumbar spinal cord to hyperalgesia induced by the unilateral subcutaneous formalin injection into the hindpaw of rats. It was demonstrated that Fos/NeuN immunoreactive (-IR) neurons, glial fibrillary acidic protein (GFAP)-IR astrocytes and OX42-IR microglia were distributed in dorsal horn of lumbar spinal cord, predominantly in the superficial layer. In the time-course studies, GFAP-IR astrocytes were firstly detected, OX42-IR microglia were sequentially observed, Fos/NeuN-IR neurons were found slightly late. ⋯ Ninety-one HGJs were found in 100 areas of experimental rats and occupied 91%, while only 39% HGJs were found in control rats. In experimental rats pretreated with intrathecal (i.t.) application of the carbenoxolone (a gap junction blocker) or fluorocitrate (a glial metabolic inhibitor), the paw withdrawal thermal latency was prolonged than those application of the sterile saline (i.t.). It suggests that spinal cord glial cells may play an important role for modulation of hyperalgesia induced by noxious stimuli through HGJs which located between astrocytes and neurons.