Neuroscience research
-
Neuroscience research · Oct 2007
Inhibition of glutamatergic transmission by morphine in the basolateral amygdaloid nucleus reduces pain-induced aversion.
We examined the role of glutamatergic transmission within the basolateral amygdaloid nucleus (BLA) in pain-induced aversion using a conditioned place paradigm and an in vivo microdialysis technique in rats. Microinjection of MK-801 (1 or 10 nmol/side) into the bilateral BLA 5 min before intraplantar injection of formalin dose-dependently attenuated formalin-induced conditioned place aversion (F-CPA) without affecting nociceptive behaviors, such as lifting, licking, and biting. On the contrary, microinjection of neither CNQX (30 nmol/side) nor AP-3 (30 nmol/side) showed any significant effect on F-CPA. ⋯ This increase in glutamate was suppressed by morphine perfusion (100 microM) via the microdialysis probe. Moreover, intra-BLA injection of morphine (10 microg/side) 5 min before formalin injection attenuated F-CPA without affecting nociceptive behaviors. These results suggest that glutamatergic transmission via NMDA receptors in the BLA plays a crucial role in the pain-induced aversion, and that in addition to the well-characterized effects on the sensory component of pain, morphine also influences the affective component of pain through an inhibitory effect on intra-BLA glutamatergic transmission.