Neuroscience research
-
Neuroscience research · May 2007
FK506 reduces the severity of cutaneous hypersensitivity in rats with a spinal cord contusion.
Spinal cord injury (SCI) leads to persistent pain as well as motor dysfunction, both of which lack effective therapeutics. The immunosuppressant FK506 (tacrolimus) has been shown to improve behavioral outcome following SCI in rats. Just prior to a mid-thoracic spinal cord contusion injury, rats were injected with either vehicle or FK506 and treatment was continued through the duration of the experiment. ⋯ Neither treated groups demonstrated an improvement in locomotor function. Thus, some SCI-induced pain is mediated by an FK506-sensitive mechanism. The data also suggest that motor and sensory dysfunctions resulting from SCI are mediated by distinct mechanisms, requiring the use of multiple therapeutic interventions.
-
Neuroscience research · May 2007
Comparative StudySpinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats.
Previous studies have shown that spinal cord stimulation (SCS) of upper lumbar segments decreases visceromotor responses to mechanical stimuli in a sensitized rat colon and reduces symptoms of irritable bowel syndrome in patients. SCS applied to the upper cervical spinal dorsal column reduces pain of chronic refractory angina. Further, chemical stimulation of C1-C2 propriospinal neurons in rats modulates the responses of lumbosacral spinal neurons to colorectal distension. ⋯ However, L2-L3 or C1-C2 SCS did not significantly affect inhibitory neuronal responses to CRD. C1-C2 SCS-induced effects were abolished by cutting the C7-C8 dorsal column but not by spinal transection at cervicomedullary junction. These data demonstrated that upper cervical or lumbar SCS modulated responses of lumbosacral spinal neurons to noxious mechanical stimulation of the colon, thereby, proved two loci for a potential therapeutic effect of SCS in patients with irritable bowel syndrome and other colonic disorders.
-
Neuroscience research · May 2007
Proteasomal inhibition in intracerebral hemorrhage: neuroprotective and anti-inflammatory effects of bortezomib.
Inflammation is an important pathophysiologic mechanism of injury induced by intracerebral hemorrhage (ICH). The ubiquitin-proteasome system (UPS) regulates the inflammatory responses via the up-regulation of several pro-inflammatory molecules. In this study, we determined that a potent proteasome inhibitor, bortezomib, exerted therapeutic effects in experimental model of ICH. ⋯ Bortezomib induced significant decrements of mRNA expression of TNF-alpha and IL-6. The production of iNOS and COX2 was also reduced significantly by bortezomib. We concluded that the early treatment with bortezomib induced a reduction in the early hematoma growth and mitigated the development of brain edema, coupled with a marked inhibitory effect on inflammation in ICH.