Neuroscience research
-
Neuroscience research · Aug 2009
Thiamylal antagonizes the inhibitory effects of dorsal column stimulation on dorsal horn activities in humans.
In humans, peripheral somatosensory information converges upon dorsal horn neurons in the spinal cord, which can be recorded from the dorsal epidural space as spinal cord potentials (SCPs) following segmental dorsal root stimulation (SS) employing epidural catheter electrodes. Antidromic action potentials and descending inhibition from the dorsolateral funiculus may contribute to SCPs following dorsal column stimulation (DCS). Effects of thiamylal (2.5-7.5 mg/kg, i.v.) on SCPs evoked by independent DCS or SS were compared with those evoked by simultaneous DCS and SS (DCS/SS). ⋯ In awake subjects, N and P potentials produced by simultaneous DCS/SS were significantly smaller than the sum of independent responses. Thiamylal anesthesia antagonized this inhibition; responses to simultaneous DCS/SS were larger than the sum of independent responses. These results suggest that in wakefulness DCS inhibits dorsal horn neuron activity in the lumbar spinal cord, while thiamylal antagonizes DCS-induced inhibition in dose-dependent fashion.
-
Neuroscience research · Aug 2009
Angiopoietin-1 induces neurite outgrowth of PC12 cells in a Tie2-independent, beta1-integrin-dependent manner.
Overexpression of angiopoietin (Ang) 1 in the brain results in increased vascularization and altered neuronal dendrite configuration. We hypothesized that Ang1 acts directly on neurons inducing neurite outgrowth. We stimulated PC12 cells with Ang1 and observed outgrowth levels comparable to nerve growth factor (NGF). ⋯ Conversely, NGF stimulation had no effect on FAK phosphorylation but led to a approximately 3.1 and approximately 2 fold increase in phosphorylation of MAPK and JNK. Ang1, but not NGF-mediated outgrowth was attenuated following functional inhibition of beta1-integrin and FAK, and Wortmannin inhibited neurite outgrowth mediated by both. Our results suggest that Ang1 induces neurite outgrowth in PC12 cells in a Tie2-independent, beta1-integrin-FAK-PI3K-Akt-dependent manner and that NGF and Ang1 mediate neurite outgrowth via two independent signaling mechanisms.
-
Neuroscience research · Aug 2009
Analgesic effect of milnacipran is associated with c-Fos expression in the anterior cingulate cortex in the rat neuropathic pain model.
The objective of the present study was to examine whether milnacipran, a serotonin-noradrenaline reuptake inhibitor, has an analgesic effect in rats with neuropathic pain. In addition, the c-Fos expression was investigated in the supraspinal sites of the brain and in the spinal dorsal horn in association with the nociceptive processing in rats with neuropathic pain produced by chronic constriction injury (CCI) in the sciatic nerve. ⋯ The anti-allodynic effect derived from milnacipran gradually increased over the observation period, indicating that the delayed-onset analgesia might be elicited by the continuous administration of milnacipran. The increased level of c-Fos expression in the anterior cingulate cortex (ACC) induced by noxious mechanical stimulation was significantly inhibited by the continuous administration of milnacipran, indicating that milnacipran might cause a functional modification in the nociceptive processing in the ACC.