Neuroscience research
-
Neuroscience research · Oct 2008
Decreased EEG synchronization and its correlation with symptom severity in Alzheimer's disease.
Global field synchronization (GFS) has recently been introduced to measure functional synchronization in frequency-domain EEG data. This study explored GFS values and its clinical significance in patients with Alzheimer's disease (AD). ⋯ GFS values were significantly lower in AD patients than in healthy controls, and they were positively correlated with MMSE and CDR scores. Our results suggest that GFS values are a useful biological correlate of cognitive decline in AD patients.
-
Neuroscience research · Oct 2008
The protection of Bcl-2 overexpression on rat cortical neuronal injury caused by analogous ischemia/reperfusion in vitro.
Recent studies have suggested that neuronal apoptosis in cerebral ischemia could arise from dysfunction of endoplasmic reticulum (ER) and mitochondria. B-cell lymphoma/leukemia-2 gene (Bcl-2) has been described as an inhibitor both in programmed cell death (PCD) and ER dysfunction during apoptosis, and the Bcl-2 family play a key role in regulating the PCD, both locally at the ER and from a distance at the mitochondrial membrane. However, its signal pathways and concrete mechanisms in endoplasmic reticulum-initiated apoptosis remain incompletely understood. ⋯ Bcl-2 overexpression inhibits the release of cyt C and the activation of caspase-9/-8/-3 but not caspase-12 based on the results of Western blot. These suggest that cross-talk between ER and mitochondria participate in neuronal damage after ischemia/reperfusion. Bcl-2 overexpression could suppress I/R-induced neuronal apoptosis via influencing mitochondrial integrity.
-
Neuroscience research · Sep 2008
GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
Outer hair cell (OHC) loss in the auditory sensory epithelium is a primary cause of noise-induced sensory-neural hearing loss (SNHL). To clarify the participation of glial cells in SNHL, we used an Alexander disease (AxD) mouse model. These transgenic mice harbor the AxD causal mutant of the human glial fibrillary acidic protein (GFAP) under the control of the mouse GFAP promoter. ⋯ Auditory threshold shifts were assessed by auditory brainstem responses (ABR) at 1 and 4 weeks after noise exposure, and OHC damage was analyzed by quantitative histology at 4 weeks after exposure. Transgenic mice showed more severe ABR deficits and OHC damage, suggesting that cochlear nerve glial cells with GFAP aggregates play a role in noise susceptibility. Thus, we should focus more on the roles of cochlear nerve glial cells in SNHL.
-
Neuroscience research · Sep 2008
Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats.
Understanding the mechanism of coupling between neuronal events and hemodynamic responses is important in non-invasive functional imaging of the brain. The stimulus frequency dependence of hemodynamic responses has been studied using a rat somatosensory cortex model; most results for short stimulus durations reveal peak frequencies at which the hemodynamic response is maximized. However, such peak frequencies have not been observed in studies using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals with long stimulus durations. ⋯ For both these durations, BOLD signals were significantly higher at stimulus frequencies of 3 or 5 Hz in agreement with the results of previous studies using optical techniques. Our results show that stimulus duration has little influence on the stimulus frequency dependence of BOLD signals in the rat somatosensory model. The discrepant results of most previous fMRI studies using gradient-echo sequence may be ascribed to the difference of imaging to enhance activation focus or draining vein.
-
Neuroscience research · Aug 2008
Developmental characteristics of neuropathic pain induced by peripheral nerve injury of rats during neonatal period.
To gain an insight into the developmental characteristics of neuropathic pain induced by peripheral nerve injury during neonatal period, we employed three groups of rats suffering from peripheral nerve injury at different postnatal times, and compared the onset time, severity and persistency of neuropathic pain behaviors, such as mechanical and cold allodynia. The first group (P0 group) was subjected to partial injury of tail-innervating nerves within 24 h after birth, the second group (P10 group) underwent nerve injury at postnatal day (P) 10, and the third group (P60 group) was subjected to injury at P60. ⋯ In addition, while the P0 and P60 groups showed long-lasting signs of mechanical allodynia, the P10 group exhibited shorter persistency. These results indicate that peripheral nerve injury during neonatal period leads to neuropathic pain with distinct developmental characteristics later in life.