Chronobiology international
-
Daily light and feeding cycles act as powerful synchronizers of circadian rhythmicity. Ultimately, these external cues entrain the expression of clock genes, which generate daily rhythmic behavioral and physiological responses in vertebrates. In the present study, we investigated clock genes in a marine teleost (gilthead sea bream). ⋯ Under constant conditions (DD + RD), Per2 and Cry1 showed circadian rhythmicity in the brain, whereas Bmal1, Clock, and Per2 did in the liver. Our results indicate that the seabream clock gene expression is endogenously controlled and in liver it is strongly entrained by food signals, rather than by the LD cycle, and that scheduled feeding can shift the phase of the daily rhythm of clock gene expression in a peripheral organ (liver) without changing the phase of these rhythms in a central oscillator (brain), suggesting uncoupling of the light-entrainable oscillator (LEO) from the food-entrainable oscillator (FEO). These findings provide the basis and new tools for improving our knowledge of the circadian system and entraining pathways of this fish species, which is of great interest for the Mediterranean aquaculture.