Journal of applied physiology
-
Effective use of high-frequency oscillatory ventilation (HFOV) may require maintenance of adequate lung volume to optimize gas exchange. To determine the impact of inflation during HFOV, sustained inflation was applied at pressures of 5, 10, and 15 cmH2O above mean airway pressure for 3, 10, and 30 s to 15 intubated, paralyzed, anesthetized rabbits after saline lavage to induce surfactant deficiency. Arterial blood gases were recorded in all rabbits while static compliance, resistance, time constant, and changes in functional residual capacity were recorded using the interrupter technique and plethysmograph in seven rabbits. ⋯ As the presence or duration of a sustained inflation was increased, oxygenation improved (P less than or equal to 0.01), but arterial PCO2 increased as longer sustained inflations were used (P less than or equal to 0.005). Sustained inflations of 5 cmH2O above mean airway pressure or of 3-s duration were ineffective. We conclude that either a critical pressure or duration of sustained inflation is needed to improve oxygenation and pulmonary mechanics during HFOV.
-
Currently used methods for calculating whole blood CO2 content from calculated plasma content, measured blood pH, hemoglobin concentration ([Hb]), and O2 saturation yield materially different results. In this study the constants of the fundamental equations relating blood CO2 content to plasma content have been reevaluated. ⋯ A calculation was derived that fitted the data well [difference 0.02 +/- 1.19 ml/100 (SD) ml, r = 0.98] blood CCO2 = plasma CCO2 (Formula: see text) where plasma CCO2 = 2.226.s.plasma PCO2.(1 + 10pH-pK'), CCO2 is CO2 content, SO2 is O2 saturation, s is the plasma CO2 solubility coefficient, and pK' is the apparent pK [s and pK' are from the equations of Kelman (Respir. Physiol. 3: 111-115, 1967)].