Journal of applied physiology
-
Comparative Study
Removal of excessive bronchial secretions by asymmetric high-frequency oscillations.
The present study evaluated whether high-frequency oscillations (HFO) with biased flow profiles applied at the airway opening are capable of altering mucus clearance. In eight anesthetized sheep, artificial mucus (100 P) was infused continuously (1 ml/min) into the left main bronchus via a cannula inserted through the dorsal wall of the left main bronchus after thoracotomy. Outcoming mucus was collected every 10 min from the end of a cuffed orotracheal tube. ⋯ Head-down tilt produced a clearance of 3.1 +/- 3 ml/10 min; addition of HFO with expiratory bias increased clearance to 11.0 +/- 2.0 ml/10 min (P less than 0.05). No clearance occurred with inspiratory biased HFO during head-down tilt. These results indicate that expiratory biased HFO at the airway opening can clear excessive airway secretions and augment clearance by postural drainage.
-
Comparative Study
Liquid-filled esophageal catheter for measuring pleural pressure in preterm neonates.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). ⋯ During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.