Journal of applied physiology
-
In ten mechanically ventilated patients, six with chronic obstructive pulmonary disease (COPD) and four with pulmonary edema, we have partitioned the total respiratory system mechanics into the lung (l) and chest wall (w) mechanics using the esophageal balloon technique together with the airway occlusion technique during constant-flow inflation (J. Appl. Physiol. 58: 1840-1848, 1985). ⋯ The work performed by the ventilator to inflate the lung (WL) averaged 2.04 +/- 0.59 and 1.25 +/- 0.21 J/l in COPD and pulmonary edema patients, respectively, whereas Ww was approximately 0.4 J/l in both groups, i.e., close to normal values. We conclude that, in mechanically ventilated patients, abnormalities in total respiratory system mechanics essentially reflect alterations in lung mechanics. However, abnormalities in chest wall mechanics can be relevant in some COPD patients with a high degree of pulmonary hyperinflation.
-
In comparing gas exchange responses of the methacholine- (MCh) challenged mongrel dog with leukotriene receptor blockers and placebo at different inspiratory O2 fractions (FIO2), we previously noted systematically different values of cardiac output as a function of drug administration and/or FIO2. This confounds identification of the effects of FIO2 and/or drugs on gas exchange, because shunt is well known to vary directly with cardiac output when other factors are equal. Accordingly, in six dogs we examined the dependence of combined shunt and low ventilation-perfusion (VA/Q) blood flow ("shunt") on cardiac output in the MCh-challenged mongrel dog. ⋯ With 12% O2 breathing shunt rose by only 2.2% per 1-l/min rise in blood flow. This FIO2 -dependent behavior of the shunt-cardiac output relationship was highly reproducible, both within and between animals. It suggests that the increase in shunt with cardiac output depends more on vascular tone of noninjured areas than on tone of the low VA/Q regions (which are hypoxic at all FIO2 values).