Journal of applied physiology
-
Clinical Trial
Hemodynamics, cerebral circulation, and oxygen saturation in Cheyne-Stokes respiration.
Because cardiovascular disorders and stroke may induce Cheyne-Stokes respiration, our purpose was to study the interaction among cerebral activity, cerebral circulation, blood pressure, and blood gases during Cheyne-Stokes respiration. Ten patients with heart failure or a previous stroke were investigated during Cheyne-Stokes respiration with recordings of daytime polysomnography, cerebral blood flow velocity, intra-arterial blood pressure, and intra-arterial oxygen saturation with and without oxygen administration. There were simultaneous changes in wakefulness, cerebral blood flow velocity, and respiration with accompanying changes in blood pressure and heart rate approximately 10 s later. ⋯ Oxygen desaturations were more severe and occurred earlier according to intra-arterial measurements than with finger oximetry. It is not possible to explain Cheyne-Stokes respiration by alterations in blood gases and circulatory time alone. Cheyne-Stokes respiration may be characterized as a state of phase-linked cyclic changes in cerebral, respiratory, and cardiovascular functions probably generated by variations in central nervous activity.