Journal of applied physiology
-
Cerebral gas embolism is a serious consequence of diving. It is associated with decompression sickness and is assumed to cause severe neurological dysfunction. A mathematical model previously developed to calculate embolism absorption time based on in vivo bubble geometry is used in which various conditions of hyperbaric therapy are considered. ⋯ Lowering the inhaled inert gas concentration from 67.5% to 50% reduces absorption time by 37% at a given pressure. Bubbles formed after diving and decompression with He are calculated to absorb up to 73% faster than bubbles created after diving and decompression with air, regardless of the recompression gas breathed. This model is a useful alternative to impractical clinical trials in assessing which initial step in hyperbaric therapy is most effective in eliminating cerebral gas embolisms should they occur.
-
Xe-enhanced computed tomography (CT; Xe-CT) is a method for the noninvasive measurement of regional pulmonary ventilation in intact subjects, determined from the washin and washout rates of the radiodense, nonradioactive gas Xe, as measured in serial CT scans. We used the Xe-CT ventilation method, along with other quantitative CT measurements, to investigate the distribution of regional lung ventilation and air content in healthy, anesthetized, mechanically ventilated dogs in the prone and supine postures. Vertical gradients in regional ventilation and air content were measured in five mongrel dogs in both prone and supine postures at four axial lung locations. ⋯ The prone lungs were more uniformly inflated compared with the supine, which were less well expanded at the base than apex. Ventilation index, a measure of regional ventilation relative to whole lung ventilation, increased steeply from apex to base in the supine animals, whereas it was again more uniform in the prone condition. We conclude that the Xe-CT method provides a reasonable, quantitative measurement of regional ventilation and promises to be a valuable tool for the noninvasive determination of regional lung function.
-
The acute effects of active and passive ascent to high altitude on plasma volume (PV) and rates of synthesis of albumin and fibrinogen have been examined. Measurements were made in two groups of healthy volunteers, initially at low altitude (550 m) and again on the day after ascent to high altitude (4,559 m). One group ascended by helicopter (air group, n = 8), whereas the other group climbed (foot group, n = 9), so that the separate contribution of physical exertion to the response could be delineated. ⋯ Plasma interleukin-6 was increased modestly in both groups but C-reactive protein was not changed in either group. It is concluded that increases in PV and plasma protein synthesis at high altitude result mainly from the physical exercise associated with climbing. However, a small stimulation of albumin and fibrinogen synthesis may be attributable to hypobaric hypoxia alone.