Journal of applied physiology
-
This paper examines potential physiological mechanisms responsible for improvement after lung volume reduction surgery (LVRS). In 25 patients (63 +/- 9 yr; 11 men, 14 women), spirometry [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], lung volumes [residual volume (RV) and total lung capacity (TLC)], small airway resistance, recoil pressures, and respiratory muscle contractility (RMC) were measured before and 4-6 mo after LVRS. Data were interpreted to assess how changes in each component of lung mechanics affect overall function. ⋯ In conclusion, LVRS improves function in emphysema by resizing the lung relative to the chest wall by reducing RV. LVRS does not change airway resistance but decreases RMC, which attenuates the potential benefits of LVRS that are generated by reducing RV/TLC. Among nonresponders, recoil pressure increased out of proportion to reduced volume, such that no increase in vital capacity or improvement in FEV(1) occurred.
-
Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. ⋯ Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive.
-
Airway dysfunction in asthma is characterized by hyperresponsiveness, heterogeneously narrowed airways, and closure of airways. To test the hypothesis that airway constriction in ovalbumin (OVA)-sensitized OVA-intranasally challenged (OVA/OVA) mice produces mechanical responses that are similar to those reported in asthmatic subjects, respiratory system resistance (Rrs) and elastance (Edyn,rs) spectra were obtained in OVA/OVA and control mice during intravenous methacholine (MCh) infusions. ⋯ During constriction, the f dependence of mechanics in control mice was consistent with homogeneous airway narrowing; however, in OVA/OVA mice, f dependence was characteristic of heterogeneously narrowed airways, closure of airways, and airway shunting. These mechanisms amplify the pulmonary mechanical responses to constrictor stimuli at physiological breathing rates and have important roles in the pathophysiology of human asthma.