Journal of applied physiology
-
Insufficiency of skeletal muscle regeneration often impedes the healing process with functional deficiencies and scar formation. We tested the hematopoietic growth factor granulocyte-colony stimulating factor (G-CSF) with respect to its efficacy to improve functional muscle regeneration following skeletal muscle injury in Wistar rats. After crush injury to the left soleus muscle, animals received daily G-CSF (20 mug/kg ip) or vehicle solution (n = 30 per group each). ⋯ This enhancement of muscle function was preceded by a significant increase of satellite cell proliferation (BrdU-positive cells/mm(2): 27 +/- 6 vs. vehicle: 12 +/- 3) and a moderate decrease of cell apoptosis (transferase nick-end labeling-positive cells/mm(2): 11 +/- 2 vs. vehicle: 16 +/- 3) at day 4. In conclusion, G-CSF histologically promoted viability and proliferation of muscle cells and functionally enhanced recovery of muscle strength. Thus G-CSF might represent a therapeutic option to optimize the posttraumatic course of muscle tissue healing.
-
Comparative Study Clinical Trial
High-dose ascorbic acid infusion abolishes chronic vasoconstriction and restores resting leg blood flow in healthy older men.
Resting whole leg blood flow and vascular conductance decrease linearly with advancing age in healthy adult men. The potential role of age-related increases in oxidative stress in these changes is unknown. Resting leg blood flow during saline and ascorbic acid infusion was studied in 10 young (25 +/- 1 yr) and 11 older (63 +/- 2 yr) healthy normotensive men. ⋯ Ascorbic acid increased femoral vascular conductance by 36% in the older men (P < 0.05) but not in the young men (P = 0.31). In conclusion, ascorbic acid infused at concentrations known to scavenge reactive oxygen species restores resting femoral artery blood flow in healthy older adult men by increasing vascular conductance. These results support the hypothesis that oxidative stress plays a major role in the reduced resting whole leg blood flow and increased leg vasoconstriction observed with aging in men.
-
We investigated the influence of load impedance on ventilator performance and the resulting effects of reduced tidal volume (Vt) on lung physiology during a 30-min ventilation of normal mice and 10 min of additional ventilation following lavage-induced injury at two positive end-expiratory pressure (PEEP) levels. Respiratory mechanics were regularly monitored, and the lavage fluid was tested for the soluble E-cadherin, an epithelial cell adhesion molecule, and surfactant protein (SP) B. ⋯ These results highlight the importance of delivering appropriate Vt to both the normal and injured lungs. By leaving the Vt uncompensated, it can significantly alter physiological and biological responses in mice.
-
The aim of this study was to investigate the effect and mechanism of synchronized gastric electrical stimulation (SGES) on gastric emptying in nonobese mice with diabetic gastroparesis (DB-GP). Eight control mice and 48 nonobese diabetic (NOD) mice with two pairs of gastric electrodes were used in this study. The study included seven groups in a randomized order [control, diabetes (DB), DB-GP, DB + SGES, DB-GP + SGES, DB-GP + Atropine, and DB-GP + SGES + Atropine groups]. ⋯ SGES accelerates gastric emptying in NOD mice with diabetic gastroparesis. The effect of SGES on gastric emptying is mediated via the cholinergic pathway. These findings suggest that SGES may have a therapeutic potential for treating patients with diabetic gastroparesis.
-
We have previously shown that hypercapnic chemoreflex in prepro-orexin knockout mice (ORX-KO) is attenuated during wake but not sleep periods. In that study, however, hypercapnic stimulation had been chronically applied for 6 h because of technical difficulty in changing the composition of the inspired gas mixture without distorting the animal's vigilance states. In the present study we examined possible involvement of orexin in acute respiratory chemoreflex during wake periods. ⋯ In addition, injection of SB-334867 (30 nmol) in WT mice decreased the hypercapnic chemoreflex (0.39 +/- 0.04 mlxmin(-1)xg(-1)x% CO(2)(-1)). On the other hand, hypoxic chemoreflex in vehicle-treated ORX-KO and SB-334867-treated WT mice was not different from that in corresponding controls. Our findings suggest that orexin plays a crucial role in CO(2) sensitivity at least during wake periods in mice.