Journal of applied physiology
-
We characterized the passive structural and active neuromuscular control of pharyngeal collapsibility in mice and hypothesized that pharyngeal collapsibility, which is elevated by anatomic loads, is reduced by active neuromuscular responses to airflow obstruction. To address this hypothesis, we examined the dynamic control of upper airway function in the isolated upper airway of anesthetized C57BL/6J mice. Pressures were lowered downstream and upstream to the upper airway to induce inspiratory airflow limitation and critical closure of the upper airway, respectively. ⋯ We conclude that upper airway collapsibility (passive Pcrit) in the C57BL/6J mouse is similar to that in the anesthetized canine, feline, and sleeping human upper airway, and that collapsibility falls markedly under active conditions. Active EMG(GG) and Vi(max) responses dissociated at higher upstream pressure levels, suggesting a decrease in the mechanical efficiency of upper airway dilators. Our findings in mice imply that anatomic and neuromuscular factors interact dynamically to modulate upper airway function, and provide a novel approach to modeling the impact of genetic and environmental factors in inbred murine strains.
-
Comparative Study
Nicotine administration and withdrawal affect survival in systemic inflammation models.
How different regimens of nicotine administration and withdrawal affect systemic inflammation is largely unknown. We studied the effects of chronic and acute nicotine administration and of nicotine withdrawal on the outcome of aseptic and septic systemic inflammation. Male C57BL/6 mice were implanted with subcutaneous osmotic pumps (to deliver nicotine) and intrabrain telemetry probes (to measure temperature). ⋯ Oppositely to acute nicotine, nicotine withdrawal increased the survival rate in sepsis from 18 to 40%. The effects on survival were not due to changes in body temperature. We conclude that acute nicotine administration and nicotine withdrawal affect survival in systemic inflammation and that these effects strongly depend on whether inflammation is aseptic or septic.
-
Comparative Study
Contrasting effects of isocapnic and hypocapnic hyperventilation on orthostatic circulatory control.
The effects of hyperventilation (HV) on mean arterial pressure (MAP) are variable. To identify factors affecting the MAP response to HV, we dissected the effects of hypocapnic HV (HHV) and isocapnic HV (IHV) and evaluated the effects of acute vs. prolonged HHV. In 11 healthy subjects the cardio- and cerebrovascular effects of HHV and IHV vs. normal ventilation were examined for 15 min in the supine position and also for 15 min during 60 degrees head-up tilt. ⋯ With supine IHV, mCBFV decreased (95% CI -14 to -4%) and MAP increased (95% CI 1 to 13 mmHg) without changes in HR. During IHV in the tilted position MAP was further augmented (95% CI 11 to 20 mmHg) without changes in CBFV or HR. Preventing hypocapnia during HV resulted in a higher MAP, suggesting two contrasting effects of HV on MAP: hypocapnia causing vasodepression and hyperpnea without hypocapnia acting as a vasopressor.