Journal of applied physiology
-
Randomized Controlled Trial
Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans.
We investigated the role of somatosensory feedback on cardioventilatory responses to rhythmic exercise in five men. In a double-blind, placebo-controlled design, subjects performed the same leg cycling exercise (50/100/150/325 ± 19 W, 3 min each) under placebo conditions (interspinous saline, L(3)-L(4)) and with lumbar intrathecal fentanyl impairing central projection of spinal opioid receptor-sensitive muscle afferents. Quadriceps strength was similar before and after fentanyl administration. ⋯ Compared with placebo, a substantial hypoventilation during fentanyl exercise was indicated by the 8-17% reduction in VE/CO(2) production (VCO(2)) secondary to a reduced breathing frequency, leading to average increases of 4-7 Torr in end-tidal PCO(2) (P < 0.001) and a reduced hemoglobin saturation (-3 ± 1%; P < 0.05) at the heaviest workload (∼90% maximal VO(2)) with fentanyl. HR was reduced 2-8%, MAP 8-13%, and ratings of perceived exertion by 13% during fentanyl vs. placebo exercise (P < 0.05). These findings demonstrate the essential contribution of muscle afferent feedback to the ventilatory, cardiovascular, and perceptual responses to rhythmic exercise in humans, even in the presence of unaltered contributions from other major inputs to cardioventilatory control.
-
Randomized Controlled Trial
Heat acclimation improves exercise performance.
This study examined the impact of heat acclimation on improving exercise performance in cool and hot environments. Twelve trained cyclists performed tests of maximal aerobic power (VO2max), time-trial performance, and lactate threshold, in both cool [13°C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (∼50% VO2max in 40°C) program. The hot and cool condition VO2max and lactate threshold tests were both preceded by either warm (41°C) water or thermoneutral (34°C) water immersion to induce hyperthermia (0.8-1.0°C) or sustain normothermia, respectively. ⋯ Heat acclimation increased plasma volume (6.5 ± 1.5%) and maximal cardiac output in cool and hot conditions (9.1 ± 3.4% and 4.5 ± 4.6%, respectively). The control group had no changes in VO2max, time-trial performance, lactate threshold, or any physiological parameters. These data demonstrate that heat acclimation improves aerobic exercise performance in temperate-cool conditions and provide the scientific basis for employing heat acclimation to augment physical training programs.
-
Randomized Controlled Trial Comparative Study
Venous emptying from the foot: influences of weight bearing, toe curls, electrical stimulation, passive compression, and posture.
This study investigated the hemodynamic properties of the plantar venous plexus (PVP), a peripheral venous pump in the human foot, with Doppler ultrasound. We investigated how different ways of introducing mechanical changes vary in effectiveness of displacing blood volume from the PVP. The contribution of the PVP was analyzed during both natural and device-elicited compressions. ⋯ Ten healthy participants had their posterior tibial, peroneal, anterior tibial, and popliteal vein blood flow monitored while performing these natural and device-elicited compressions of the PVP supine and in an upright position. Results indicated that 1) natural compression of the PVP, weight bearing and toe curls, expelled a significantly larger volume of blood than device-elicited PVP compression, IPC and electrical stimulation; 2) there was no difference between the venous volume elicited by weight bearing and by toe curls; 3) expelled venous volume recorded at the popliteal vein under all test conditions was significantly greater than that recorded from the posterior tibial and peroneal veins; 4) there was no significant difference between the volume in the posterior tibial and peroneal veins; 5) ejected venous volume recorded in the upright position was significantly higher than that recorded in the supine position. Our study shows that weight bearing and toe curls make similar contributions to venous emptying of the foot.