Journal of applied physiology
-
Randomized Controlled Trial Comparative Study
The relationship between cardiac output and dynamic cerebral autoregulation in humans.
Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. ⋯ In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.
-
Randomized Controlled Trial
Sustained hyperoxia stabilizes breathing in healthy individuals during NREM sleep.
The present study was designed to determine whether hyperoxia would lower the hypocapnic apneic threshold (AT) during non-rapid eye movement (NREM) sleep. Nasal noninvasive mechanical ventilation was used to induce hypocapnia and subsequent central apnea in healthy subjects during stable NREM sleep. Mechanical ventilation trials were conducted under normoxic (room air) and hyperoxic conditions (inspired PO(2) > 250 Torr) in a random order. ⋯ In nine participants, compared with room air, exposure to hyperoxia was associated with a significant decrease in eupneic PET(CO(2)) (37.5 ± 0.6 vs. 41.1 ± 0.6 Torr, P = 0.001), widening of the CO(2) reserve (-3.8 ± 0.8 vs. -2.0 ± 0.3 Torr, P = 0.03), and a subsequent decline in AT (33.3 ± 1.2 vs. 39.0 ± 0.7 Torr; P = 001). The hypocapnic ventilatory response was also decreased with hyperoxia. In conclusion, 1) hyperoxia was associated with a decreased AT and an increase in the magnitude of hypocapnia required for the development of central apnea. 2) Thus hyperoxia may mitigate the effects of hypocapnia on ventilatory motor output by lowering the hypocapnic ventilatory response and lowering the resting eupneic PET(CO(2)), thereby decreasing plant gain.