Journal of applied physiology
-
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Here, we tested four hypotheses in unanesthetized, spontaneously breathing rats using radiotelemetry for EEG and diaphragm electromyography (Dia EMG) activity: 1) AIH induces LTF in Dia EMG activity; 2) diaphragm LTF (Dia LTF) is more robust during sleep vs. wakefulness; 3) AIH (or repetitive AIH) disrupts natural sleep-wake architecture; and 4) preconditioning with daily AIH (dAIH) for 7 days enhances Dia LTF. Sleep-wake states and Dia EMG were monitored before (60 min), during, and after (60 min) AIH (10, 5-min hypoxic episodes, 5-min normoxic intervals; n = 9), time control (continuous normoxia, n = 8), and AIH following dAIH preconditioning for 7 days (n = 7). ⋯ We conclude that 1) AIH induces Dia LTF during NREM sleep and wakefulness; 2) Dia LTF is greater in NREM sleep vs. QW and is abolished during REM sleep; 3) AIH and repetitive AIH disrupt natural sleep patterns; and 4) Dia LTF is unaffected by dAIH. The capacity for plasticity in spinal pump muscles during sleep and wakefulness suggests an important role in the neural control of breathing.
-
Variable (or noisy) ventilation (VV) has been demonstrated in animal models of acute lung injury to be superior to constant (or conventional) ventilation (CV), in terms of improved gas exchange and mitigation of lung injury, for reasons that are not entirely clear. We hypothesized that the efficacy of VV is related to the fact that recruitment and derecruitment of lung units are dynamic processes. To test this hypothesis, we modeled the lung computationally as a symmetrically bifurcating airway tree terminating in elastic units. ⋯ The model is able to accurately mimic previous experimental measurements showing that the lungs of mice injured by acid aspiration are better recruited after 60 min of VV than CV. The model also shows that recruitment/derecruitment dynamics contribute to the relative efficacy of VV, provided lung units open more rapidly than they close once a critical opening or closing pressure threshold has been crossed. We conclude that the dynamics of recruitment and derecruitment in the lung may be important factors responsible for the benefits of VV compared with CV.