Journal of applied physiology
-
While right ventricular (RV) dysfunction has long been known to affect the performance of left ventricle (LV), the mechanisms remain poorly defined. Recently, speckle-tracking echocardiography has demonstrated that preservation of strain and rotational dynamics is crucial to both LV systolic and diastolic function. We hypothesized that alteration in septal strain and rotational dynamics of the LV occurs during acute RV pressure overload (RVPO) and leads to decreased cardiac performance. ⋯ RVPO decreased septal radial strain on LV side by 27% and induced a negative radial strain from 28 ± 5 to -16 ± 2% on the RV side of the septum. The septal circumferential strain on both LV and RV side decreased by 46 and 50%, respectively, following RVPO (P < 0.05). Our results suggest that acute RVPO impairs LV performance by primarily altering septal strain and apical rotation.
-
Head-down-tilt bed rest (HDTBR) is a popular model, simulating alterations of gravitation during space missions. The aim of this study was to obtain a better insight into the complexly orchestrated regulations of HDTBR-induced immunological responses, hypothesizing that artificial gravity can mitigate these HDTBR-related physiological effects. This crossover-designed 5 days of HDTBR study included three protocols with no, or daily 30 min of centrifugation or 6 × 5 min of centrifugation. ⋯ Although immune functional tests did not indicate a change in the immune performance, the expression of CD62L on resting granulocytes was significantly shed by 50% during HDTBR. Although the latter is normally associated to an activation of inflammatory innate immune responses and during interaction of granulocytes with the endothelium, CD62L shedding was, however, not related either to a systemic inflammatory alteration or to shedding of the endothelial glycocalyx during bed rest. This suggests a noninflammatory or "mechanical" shedding related to fluid shifts during head-down intervention and not to an acute inflammatory process.
-
The frequency-response of pressure autoregulation is not well delineated; therefore, the optimal frequency of arterial blood pressure (ABP) modulation for measuring autoregulation is unknown. We hypothesized that cerebrovascular autoregulation is band-limited and delineated by a cutoff frequency for which ABP variations induce cerebrovascular reactivity. Neonatal swine (n = 8) were anesthetized using constant minute ventilation while positive end-expiratory pressure (PEEP) was modulated between 6 and 0.75 cycles/min (min(-1)). ⋯ Data taken above LLA fit a Butterworth high-pass filter model with a cutoff frequency at 1.8 min(-1) (95% confidence interval: 1.5-2.2). Cerebrovascular reactivity occurs for sustained ABP changes lasting 30 s or longer. The ability to distinguish intact and impaired autoregulation was maximized by a 60-s wave (1 min(-1)), which was 100% sensitive and 100% specific in this model.
-
Obesity is associated with increased prevalence of thromboembolic events. We aimed to investigate whether obese women might benefit from vigorous aerobic exercise. Forty-two overweight and obese women performed a 30-min walking exercise test (treadmill ergometer) at an intensity of 70% of individual peak oxygen uptake. ⋯ White blood cell count increased significantly from pre- to postexercise (P = 0.045), indicating a mild exercise-induced leukocytosis. The results of this study demonstrate that vigorous aerobic exercise might be a suitable tool to protect obese women from thrombotic events. We show that a single bout of vigorous aerobic exercise is clearly associated with an activation of the fibrinolytic system and a decreased readiness of the postexercise samples to form a clot and to generate thrombin, the pivotal enzyme of hemostasis.