Journal of applied physiology
-
Managing patients with acute respiratory distress syndrome (ARDS) requires mechanical ventilation that balances the competing goals of sustaining life while avoiding ventilator-induced lung injury (VILI). In particular, it is reasonable to suppose that for any given ARDS patient, there must exist an optimum pair of values for tidal volume (VT) and positive end-expiratory pressure (PEEP) that together minimize the risk for VILI. To find these optimum values, and thus develop a personalized approach to mechanical ventilation in ARDS, we need to be able to predict how injurious a given ventilation regimen will be in any given patient so that the minimally injurious regimen for that patient can be determined. ⋯ We estimated total VILI in two ways: 1) as the sum of the contributions from volutrauma and atelectrauma and 2) as the product of their contributions. We found the product provided estimates of VILI that are more in line with our previous experimental findings. This model may thus serve as the basis for the objective choice of mechanical ventilation parameters for the injured lung.
-
Cerebral perfusion pressure (CPP) is used as a surrogate for measurement of cerebral blood flow (CBF) but its determination requires that intracranial pressure be directly measured. Near-infrared spectroscopy (NIRS) can noninvasively measure tissue oxygenation. We hypothesized that NIRS would correlate well with CBF, with cerebral metabolism of oxygen (CMRO2) and glucose and with lactate production as CPP was reduced. ⋯ The correlation of NIRS with CBF was slightly better (P < 0.05) than that of CPP with CBF [0.89 (0.84-0.94)]. In this model of global cerebral hypertension, NIRS correlated well with CBF and measures of cerebral metabolism, and might be useful as a surrogate for CPP. Further studies are warranted to determine if NIRS is associated with these variables in focal cerebral injury.
-
Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. ⋯ However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes.