Journal of applied physiology
-
Comparative Study
An assessment of the autonomic nervous system in the electrohypersensitive population: a heart rate variability and skin conductance study.
The aim of the study was twofold: first, to compare the activity of the autonomic nervous system (ANS) between the population self-declared as electrohypersensitive (EHS) and their matched control individuals without intended exposure to electromagnetic fields (EMF). The second objective was to determine whether acute exposure to different radiofrequency signals modifies ANS activity in EHS. For that purpose, two different experiments were undertaken, in which ANS activity was assessed through heart rate variability (HRV) and skin conductance (SC). ⋯ NEW & NOTEWORTHY This study provided analysis on the skin conductance parameters using a newly developed method (peak/min, extraction of skin conductance responses) that had not been performed previously. Additionally, the skin conductance signal was decomposed, considering tonic and phasic activities to be a distinct compound. Moreover, this is the first time a study has been designed into two steps to understand whether the autonomic nervous system is disturbed in the EHS population.
-
Randomized Controlled Trial
Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading.
Assessment of diaphragmatic effort is challenging, especially in critically ill patients in the phase of weaning. Fractional thickening during inspiration assessed by ultrasound has been used to estimate diaphragm effort. It is unknown whether more sophisticated ultrasound techniques such as speckle tracking are superior in the quantification of inspiratory effort. ⋯ However, this technique is invasive and requires expertise, and the interpretation may be complex. We report that speckle tracking ultrasound can be used to detect stepwise increases in diaphragmatic effort. Strain and strain rate were highly correlated with transdiaphragmatic pressure, and therefore, diaphragm electric activity and speckle tracking might serve as reliable tools to quantify diaphragm effort in the future.
-
Comparative Study
Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.
Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. ⋯ NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight.
-
In asthma, bronchoconstriction causes topographically heterogeneous airway narrowing, as measured by three-dimensional ventilation imaging. Computation modeling suggests that peripheral airway dysfunction is a potential determinant of acute airway narrowing measured by imaging. We hypothesized that the development of low-ventilation regions measured topographically by three-dimensional imaging after bronchoconstriction is predicted by peripheral airway function. ⋯ NEW & NOTEWORTHY Using ventilation SPECT/CT imaging in asthmatics, we show induced bronchoconstriction leads to the development of areas of low ventilation. Furthermore, the relative volume of the low-ventilation regions was predicted by ventilation heterogeneity in diffusion-dependent acinar airways. This suggests that the pattern of regional airway narrowing in asthma is determined by acinar airway function.