Journal of applied physiology
-
The mechanisms linking reduced diffusing capacity of the lung for carbon monoxide (DlCO) to dyspnea and exercise intolerance across the chronic obstructive pulmonary disease (COPD) continuum are poorly understood. COPD progression generally involves both DlCO decline and worsening respiratory mechanics, and their relative contribution to dyspnea has not been determined. In a retrospective analysis of 300 COPD patients who completed symptom-limited incremental cardiopulmonary exercise tests, we tested the association between peak oxygen-uptake (V̇o2), DlCO, and other resting physiological measures. ⋯ The higher dyspnea ratings and earlier exercise termination in low DlCO groups were linked to significantly greater pulmonary gas exchange abnormalities, higher ventilatory demand, and associated accelerated dynamic mechanical constraints. NEW & NOTEWORTHY Our study demonstrated that chronic obstructive pulmonary disease patients with diffusing capacity of the lung for carbon monoxide (DlCO) less than the lower limit of normal had greater pulmonary gas exchange abnormalities, which resulted in higher ventilatory demand and greater dynamic mechanical constraints at lower ventilation during exercise. This, in turn, led to greater exertional dyspnea and exercise intolerance compared with patients with normal DlCO.