Journal of applied physiology
-
We investigated the effects of lung inflation during continuous positive airway pressure breathing (CPAP) on airway defensive reflexes in 10 enflurane-anesthetized spontaneously breathing humans. The airway defensive reflexes were induced by instillation into the trachea of 0.5 ml of distilled water at two different levels of end-expiratory pressure (0 and 10 cmH2O CPAP). ⋯ Lung inflation during CPAP of 10 cmH2O did not exert any influence on these reflex responses in terms of the types, latencies, and durations of reflex responses although the intensity of the expiration reflex and cough reflex was augmented by lung inflation. Our results suggest that the pulmonary stretch receptors do not play an important role in the mechanisms of airway defensive reflexes in humans.
-
Comparative Study
Removal of excessive bronchial secretions by asymmetric high-frequency oscillations.
The present study evaluated whether high-frequency oscillations (HFO) with biased flow profiles applied at the airway opening are capable of altering mucus clearance. In eight anesthetized sheep, artificial mucus (100 P) was infused continuously (1 ml/min) into the left main bronchus via a cannula inserted through the dorsal wall of the left main bronchus after thoracotomy. Outcoming mucus was collected every 10 min from the end of a cuffed orotracheal tube. ⋯ Head-down tilt produced a clearance of 3.1 +/- 3 ml/10 min; addition of HFO with expiratory bias increased clearance to 11.0 +/- 2.0 ml/10 min (P less than 0.05). No clearance occurred with inspiratory biased HFO during head-down tilt. These results indicate that expiratory biased HFO at the airway opening can clear excessive airway secretions and augment clearance by postural drainage.
-
Comparative Study
Liquid-filled esophageal catheter for measuring pleural pressure in preterm neonates.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). ⋯ During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.
-
The accuracy of two pulse oximeters (Ohmeda 3700 and Biox IIa) was evaluated during cycle ergometer incremental exercise in 10 healthy subjects. The exercise protocol began at 30 W with the power output being increased 15 W.min-1 until volitional fatigue. Ear and finger probe pulse oximetry measurements of available hemoglobin (%Spo2) were compared with arterial oxyhemoglobin fraction of total hemoglobin (%HbO2) measured directly from arterial blood samples using a CO-oximeter. ⋯ Small and insignificant differences (P greater than 0.05) existed between SpO2 (all 3 instruments) and %SaO2 at the lowest work rate and the highest power output achieved. Regression analyses of %SpO2 vs. %SaO2 produced correlation coefficients of r = 0.82 [standard error of the estimate [(SEE) = 1.79], r = 0.89 (SEE = 1.48), and r = 0.93 (SEE = 1.14) for the Biox IIa, Ohmeda 3700 (ear), and the Ohmeda 3700 (finger) pulse oximeters, respectively. We conclude that pulse oximetry, within the above limits of accuracy, is useful in estimating %SaO2 during exercise in healthy subjects.
-
We investigated responses of respiration, blood pressure, and heart rate to tracheal mucosa irritation induced by injection of distilled water at three different levels of CO2 ventilatory drive in 11 spontaneously breathing female patients under a constant depth of enflurane anesthesia [1.1 minimum alveolar concentration (MAC)]. The airway irritation at the resting level of spontaneous breathing caused a variety of respiratory responses such as coughing, expiration reflex, apnea, and spasmodic panting, with considerable increases in blood pressure and heart rate. ⋯ An increase in CO2 ventilatory drive decreased the degree and duration of respiratory, blood pressure, and heart rate responses to the airway irritation, whereas a decrease in CO2 ventilatory drive had the opposite effect on these responses. Our results indicate that changes in CO2 ventilatory drive can modify reflex responses of respiration, blood pressure, and heart rate to airway irritation.