Journal of applied physiology
-
Obesity is associated with increased prevalence of thromboembolic events. We aimed to investigate whether obese women might benefit from vigorous aerobic exercise. Forty-two overweight and obese women performed a 30-min walking exercise test (treadmill ergometer) at an intensity of 70% of individual peak oxygen uptake. ⋯ White blood cell count increased significantly from pre- to postexercise (P = 0.045), indicating a mild exercise-induced leukocytosis. The results of this study demonstrate that vigorous aerobic exercise might be a suitable tool to protect obese women from thrombotic events. We show that a single bout of vigorous aerobic exercise is clearly associated with an activation of the fibrinolytic system and a decreased readiness of the postexercise samples to form a clot and to generate thrombin, the pivotal enzyme of hemostasis.
-
Recently, several high-impact reviews suggest that regular aerobic exercise is beneficial for maintaining cognitive function in aging adults. Higher cerebral blood flow and/or cerebrovascular reactivity may explain the favorable effect of exercise on cognition. In addition, prostaglandin-mediated vasodilator responses may be influenced by regular exercise. ⋯ Furthermore, the change in MCAv reactivity (between baseline and indomethacin trials) was also associated with Vo2max (r = 0.59; P < 0.05) in older adults. Cerebral vasodilator responses to hypercapnia were associated with maximal aerobic capacity in healthy older adults. These results may explain the physiological link between regular aerobic exercise and improved cognitive function in aging adults.
-
Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 may also play key roles in inactivity-induced atrophy of respiratory muscles, but it remains unknown if these proteases are essential for disuse atrophy in limb skeletal muscles. ⋯ Independent pharmacological inhibition of calpain or caspase-3 prevented this casting-induced atrophy. Interestingly, inhibition of calpain activity also prevented caspase-3 activation, and, conversely, inhibition of caspase-3 prevented calpain activation. These findings indicate that a regulatory cross talk exists between these proteases and provide the first evidence that the activation of calpain and caspase-3 is required for inactivity-induced limb muscle atrophy.
-
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. ⋯ Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.