Bone
-
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. ⋯ Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
-
Between 5% and 10% of all fractures fail to heal adequately resulting in nonunion of the fracture fragments. This can significantly decrease a patient's quality of life and create associated psychosocial and socio-economic problems. Nitric oxide (NO) and nitric oxide synthases (NOS) have been found to be involved in fracture healing, but until now it is not known if disturbances in these mechanisms play a role in nonunion and delayed union development. In this study, we explored the role of endothelial and inducible NOS deficiency in a delayed union model in mice. ⋯ In the present study we show for the first time that the absence of nitric oxide synthases results in a disturbed arginine-NO metabolism and inadequate fracture healing with the transition of delayed union into a nonunion in mice after a femur osteotomy. Based on these data we suggest that the arginine-NO metabolism may play a role in the prevention of delayed unions and nonunions.