Bone
-
Osteogenesis Imperfecta (OI) is a clinically and genetically heterogeneous disorder. Although differential diagnosis is greatly facilitated by next generation sequencing, its availability can vary considerably. In this study, we compared targeted gene panel or exome sequencing with clinical scoring and grouping in a cohort of 50 OI index patients recruited by a single Indian clinical center in an unselected fashion. ⋯ There was a clear correlation between genotype and phenotype severity: IFITM5=LEPRE1>WNT1>SERPINF1>COL1A1 (qualitative)>BMP1>FKBP10>COL1A2 (qualitative)>COL1A1 (quantitative)>COL1A2 (quantitative). In one patient we found heterozygous variants in COL1A1 and COL1A2 inherited from parents without an obvious bone phenotype indicating that both variants might contribute to the phenotype. Our findings demonstrate the clinical utility of gene panel testing for OI, but in cases with contractures, hypertrophic callus formation, or - to some extent - extensive bowing single gene analysis might still be more cost-effective.
-
Our recent studies demonstrated that regional bone loss in the unloaded hind limbs of tail-suspended mice triggered pain-like behaviors due to the acidic environment in the bone induced by osteoclast activation. The aims of the present study were to examine whether TRPV1, ASIC and P2X (known as nociceptors) are expressed in bone, and whether the antagonists to those receptors affect the expression of osteoblast and osteoclast regulators, and prevent the triggering of not only pain-like behaviors but also high bone turnover conditions in tail-suspension model mice. The hind limb-unloaded mice were subjected to tail suspension with the hind limbs elevated for 14days. ⋯ Pain-like behaviors were significantly improved by the treatment with TRPV1, ASIC, P2X antagonists; TRPV1, ASICs and P2X were expressed in the bone tissues; and the antagonists to these receptors down-regulated the expression of osteoblast and osteoclast regulators in tail-suspended mice. In addition, continuous treatment with a TRPV1 antagonist during tail-suspension prevented the induction of pain-like behaviors and regional bone loss in the unloaded hind limbs. We, therefore, believe that those receptor antagonists have a potential role in preventing the triggering of skeletal pain with associated regional bone metabolic disorder.