Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
-
J Clin Neurophysiol · Nov 2000
Pain-related somatosensory evoked magnetic fields induced by controlled ballistic mechanical impacts.
The purpose of this study was to investigate cortical processing of painful compared with tactile mechanical stimulation by means of magnetoencephalography (MEG) using the novel technique of mechanical impact loading. A light, hard projectile is accelerated pneumatically in a guiding barrel and elicits a brief sensation of pain when hitting the skin in free flight. Controllable noxious and innocuous impact velocities facilitate the generation of different, predetermined stimulus intensities. ⋯ Additional long-latency responses occurred in these cortical areas as long as 280 msec after painful stimulation in three subjects. In contrast to tactile stimulation, painful mechanical impacts elicited SSEF responses in cortical areas demonstrated to be involved in central pain processing by previous MEG and neuroimaging studies. Because of its similarity to natural noxious stimuli and the possibility of adjustable painful and tactile impact velocities, the technique of mechanical impact loading provides a useful method for the neurophysiologic evaluation of cortical pain perception.