Critical care clinics
-
Critical care data contain information about the most physiologically fragile patients in the hospital, who require a significant level of monitoring. However, medical devices used for patient monitoring suffer from measurement biases that have been largely underreported. This article explores sources of bias in commonly used clinical devices, including pulse oximeters, thermometers, and sphygmomanometers. Further, it provides a framework for mitigating these biases and key principles to achieve more equitable health care delivery.
-
Critical care clinics · Oct 2023
ReviewLeveraging Data Science and Novel Technologies to Develop and Implement Precision Medicine Strategies in Critical Care.
Precision medicine aims to identify treatments that are most likely to result in favorable outcomes for subgroups of patients with similar clinical and biological characteristics. The gaps for the development and implementation of precision medicine strategies in the critical care setting are many, but the advent of data science and multi-omics approaches, combined with the rich data ecosystem in the intensive care unit, offer unprecedented opportunities to realize the promise of precision critical care. In this article, the authors review the data-driven and technology-based approaches being leveraged to discover and implement precision medicine strategies in the critical care setting.
-
Critical care clinics · Oct 2023
ReviewMachine Learning of Physiologic Waveforms and Electronic Health Record Data: A Large Perioperative Data Set of High-Fidelity Physiologic Waveforms.
Perioperative morbidity and mortality are significantly associated with both static and dynamic perioperative factors. The studies investigating static perioperative factors have been reported; however, there are a limited number of previous studies and data sets analyzing dynamic perioperative factors, including physiologic waveforms, despite its clinical importance. To fill the gap, the authors introduce a novel large size perioperative data set: Machine Learning Of physiologic waveforms and electronic health Record Data (MLORD) data set. They also provide a concise tutorial on machine learning to illustrate predictive models trained on complex and diverse structures in the MLORD data set.
-
Critical care clinics · Oct 2023
ReviewClinician Trust in Artificial Intelligence: What is Known and How Trust Can Be Facilitated.
Predictive analytics based on artificial intelligence (AI) offer clinicians the opportunity to leverage big data available in electronic health records (EHR) to improve clinical decision-making, and thus patient outcomes. Despite this, many barriers exist to facilitating trust between clinicians and AI-based tools, limiting its current impact. Potential solutions are available at both the local and national level. It will take a broad and diverse coalition of stakeholders, from health-care systems, EHR vendors, and clinical educators to regulators, researchers and the patient community, to help facilitate this trust so that the promise of AI in health care can be realized.
-
Critical care clinics · Oct 2023
ReviewImplementing Artificial Intelligence: Assessing the Cost and Benefits of Algorithmic Decision-Making in Critical Care.
This article provides an overview of the most useful artificial intelligence algorithms developed in critical care, followed by a comprehensive outline of the benefits and limitations. We begin by describing how nurses and physicians might be aided by these new technologies. We then move to the possible changes in clinical guidelines with personalized medicine that will allow tailored therapies and probably will increase the quality of the care provided to patients. Finally, we describe how artificial intelligence models can unleash researchers' minds by proposing new strategies, by increasing the quality of clinical practice, and by questioning current knowledge and understanding.