Critical care clinics
-
Critical care clinics · Oct 2023
ReviewLeveraging Data Science and Novel Technologies to Develop and Implement Precision Medicine Strategies in Critical Care.
Precision medicine aims to identify treatments that are most likely to result in favorable outcomes for subgroups of patients with similar clinical and biological characteristics. The gaps for the development and implementation of precision medicine strategies in the critical care setting are many, but the advent of data science and multi-omics approaches, combined with the rich data ecosystem in the intensive care unit, offer unprecedented opportunities to realize the promise of precision critical care. In this article, the authors review the data-driven and technology-based approaches being leveraged to discover and implement precision medicine strategies in the critical care setting.
-
Critical care clinics · Oct 2023
ReviewMaking the Improbable Possible: Generalizing Models Designed for a Syndrome-Based, Heterogeneous Patient Landscape.
Syndromic conditions, such as sepsis, are commonly encountered in the intensive care unit. Although these conditions are easy for clinicians to grasp, these conditions may limit the performance of machine-learning algorithms. ⋯ Recent advances in data science, such as transfer learning, conformal prediction, and continual learning, may improve generalizability of machine-learning algorithms in critically ill patients. Randomized trials with these approaches are indicated to demonstrate improvements in patient-centered outcomes at this point.
-
Critical care clinics · Oct 2023
ReviewDesigning and Implementing "Living and Breathing" Clinical Trials: An Overview and Lessons Learned from the COVID-19 Pandemic.
The practice of medicine is characterized by uncertainty, and the findings of randomized clinical trials (RCTs) are meant to help curb that uncertainty. Traditional RCTs, however, have many limitations. ⋯ These new designs recognize uncertainty permeates medical decision making and aim to capitalize on modern health system infrastructure to integrate investigation as a component of care delivery. This article provides an overview of "living, breathing" trials, including current state, anticipated developments, and areas of controversy.
-
Critical care data contain information about the most physiologically fragile patients in the hospital, who require a significant level of monitoring. However, medical devices used for patient monitoring suffer from measurement biases that have been largely underreported. This article explores sources of bias in commonly used clinical devices, including pulse oximeters, thermometers, and sphygmomanometers. Further, it provides a framework for mitigating these biases and key principles to achieve more equitable health care delivery.
-
Data science has the potential to greatly enhance efforts to translate evidence into practice in critical care. The intensive care unit is a data-rich environment enabling insight into both patient-level care patterns and clinician-level treatment patterns. By applying artificial intelligence to these novel data sources, implementation strategies can be tailored to individual patients, individual clinicians, and individual situations, revealing when evidence-based practices are missed and facilitating context-sensitive clinical decision support. To achieve these goals, technology developers should work closely with clinicians to create unbiased applications that are integrated into the clinical workflow.