Metabolic brain disease
-
Metabolic brain disease · Mar 2014
Comparative StudyAnalgesic and anti-inflammatory effects of honey: the involvement of autonomic receptors.
The use of honey for therapeutic purposes is on the increase and many studies have shown that honey has the ability to influence biological systems including pain transmission. Therefore, this study was designed to investigate the analgesic and anti-inflammatory effects of honey and the effects of concurrent administration of autonomic nervous system blocking drugs. Studies on analgesic activities was carried out using hotplate and formalin-induced paw licking models while the anti-inflammatory activity was by the carrageenan paw oedema method. ⋯ Hexamethonium also spared the effects of honey at the early and late phases of the test while atropine only inhibited the early phase of the test. However, atropine and hexamethonium spared the anti-inflammatory effects of honey but tamsulosin abolished the effects while propranolol only abolished the anti-inflammatory effects at the peak of the inflammation. The results suggest the involvement of autonomic receptors in the anti-nociceptive and anti-inflammatory effects of honey although the level of involvement depends on the different types of the receptors.
-
Metabolic brain disease · Mar 2014
Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.
Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. ⋯ Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.