Metabolic brain disease
-
Metabolic brain disease · Dec 2016
Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus.
There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum. ⋯ Moreover, our results revealed no significant changes in either expression or localization of SYP in insulin-treated group pups when compared with the controls (P ≥ 0.05 each). The present study demonstrated that maternal diabetes has adverse effects on the synaptogenesis in the offspring's cerebellum. Furthermore, the rigid maternal blood glucose control in the most cases normalized these negative impacts.
-
Metabolic brain disease · Dec 2016
ReviewCurrent state of knowledge of hepatic encephalopathy (part III): non-absorbable disaccharides.
Nonabsorbable disaccharides have been the mainstay of treatment for hepatic encephalopathy since introduced into clinical practice in 1966. Their beneficial effects reflect their ability to reduce the intestinal production/absorption of ammonia. A recent Cochrane review confirmed the efficacy and safety of nonabsorbable disaccharides for the treatment and prevention of hepatic encephalopathy in patients with cirrhosis. The findings were robust and support the use of nonabsorbable disaccharides as a first line treatment for hepatic encephalopathy, in this patient population, and for its prevention.
-
Metabolic brain disease · Dec 2016
Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.
Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl4). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). ⋯ CCl4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.