Movement disorders : official journal of the Movement Disorder Society
-
In patients with Parkinson's disease, gait and balance difficulties have emerged as some of the main therapeutic concerns. During earlier stages of the disease, the dopamine-responsive aspects of gait disorder can be treated initially with dopaminergic drugs or deep brain stimulation. However, certain temporal aspects of parkinsonian gait disorder remain therapeutically resistant in both the short term and the long term. In this review, we summarize the effects of deep brain stimulation on gait and postural symptoms in the five currently available targets (subthalamic nucleus, globus pallidus, ventralis intermedius thalamic nucleus, pedunculopontine nucleus, and substantia nigra) and describe programming strategies for patients who are mainly disabled by gait problems.
-
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. ⋯ Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.
-
Randomized Controlled Trial
A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington's disease.
We examined the effects of 3 dosages of pridopidine, a dopamine-stabilizing compound, on motor function and other features of Huntington's disease, with additional evaluation of its safety and tolerability. This was a randomized, double-blind, placebo-controlled trial in outpatient neurology clinics at 27 sites in the United States and Canada. Two hundred twenty-seven subjects enrolled from October 24, 2009, to May 10, 2010. ⋯ Although the primary analysis did not demonstrate a statistically significant treatment effect, the overall results suggest that pridopidine may improve motor function in Huntington's disease. The 90 mg/day dosage appears worthy of further study. Pridopidine was well tolerated.
-
Mild cognitive impairment (MCI) can occur early in the course of Parkinson's disease (PD), and its presence increases the risk of developing dementia. Determining the cortical changes associated with MCI in PD, thus, may be useful in predicting the future development of dementia. To address this objective, 37 patients with PD, divided into 2 groups according to the presence or absence MCI (18 with and 19 without) and 16 matched controls, underwent anatomic magnetic resonance imaging. ⋯ In addition, a comparison between the PD-MCI and PD non-MCI groups revealed increased local surface area in the occipital lobe, temporal lobe, and postcentral gyrus for the cognitively impaired patients. It is noteworthy that, in the PD-MCI group, cortical thickness had a significant negative correlation with disease duration in the precentral, supramarginal, occipital, and superior temporal cortices; whereas, in the PD non-MCI group, such a correlation was absent. The findings from this study reveal that, at the same stage of PD evolution, the presence of MCI is associated with a higher level of cortical changes, suggesting that cortical degeneration is increased in patients with PD because of the presence of MCI.
-
Improvement after bilateral globus pallidus internus deep brain stimulation (DBS) in primary generalized dystonia has been negatively associated with disease duration and age, but no predictive factors have been identified in primary cervical dystonia (CD). ⋯ Although this is the largest study supporting efficacy of bilateral pallidal DBS in primary CD, no major clinical predictive outcomes of surgical benefit were identified.