Movement disorders : official journal of the Movement Disorder Society
-
The objective of this study was to study motor and nonmotor symptoms and striatal dopaminergic denervation, as well as the relationship between them, in a cohort of asymptomatic relatives of patients with Parkinson's disease (PD) with the R1441G-leucine-rich repeat kinase 2 mutation. ⋯ Asymptomatic carriers of the R1441G-leucine-rich repeat kinase 2 mutation have evidence of dopaminergic nigrostriatal denervation, mainly in the putamen, which is associated with a decline in the execution of complex motor tests. These tests could be early indicators of the ongoing dopaminergic deficit in this group at risk of PD.
-
Parkinson's disease (PD) is marked pathologically by dopamine neuron loss and iron overload in the substantia nigra pars compacta. Midbrain iron content is reported to be increased in PD based on magnetic resonance imaging (MRI) R2* changes. Because quantitative susceptibility mapping is a novel MRI approach to measure iron content, we compared it with R2* for assessing midbrain changes in PD. ⋯ The use of quantitative susceptibility mapping demonstrated marked nigral changes that correlated with clinical PD status more sensitively than R2*. These data suggest that quantitative susceptibility mapping may be a superior imaging biomarker to R2* for estimating brain iron levels in PD.
-
The basis for SWEDD is unclear, with most cases representing PD mimics but some later developing PD with a dopaminergic deficit. ⋯ SWEDD can occur in genetically determined PD and may, in some cases, be the result of compensatory nondopaminergic mechanisms operating in early disease.
-
A combination of preoperative magnetic resonance imaging (MRI) with real-time transcranial ultrasound, known as fusion imaging, may improve postoperative control of deep brain stimulation (DBS) electrode location. Fusion imaging, however, employs a weak magnetic field for tracking the position of the ultrasound transducer and the patient's head. Here we assessed its feasibility, safety, and clinical relevance in patients with DBS. ⋯ Magnetic resonance-ultrasound real-time fusion imaging of DBS electrodes is safe with distinct precautions and improves assessment of electrode location. It may lower the need for repeated CT or MRI scans in DBS patients.