Immunologic research
-
Despite intensive ongoing research efforts, the mortality of patients with sepsis remains unacceptably high. Clinical trials emerging from promising results in animal models have mostly failed to deliver sufficient treatment strategies so far. Many studies investigating the underlying mechanisms of sepsis have focused on deterioration of the humoral and cellular components of the immune system. ⋯ So far, not much is known about the effects of a dysregulated immune system as seen in sepsis on parenchymal cells of end organs. Studies on the interaction of the complement system and kidney as well as liver cells resulted in interesting yet still inconclusive data. In this review, we provide new insights into mechanisms during sepsis based on recent findings.
-
Immunologic research · Jan 2006
ReviewDeciphering the complexity of acute inflammation using mathematical models.
Various stresses elicit an acute, complex inflammatory response, leading to healing but sometimes also to organ dysfunction and death. We constructed both equation-based models (EBM) and agent-based models (ABM) of various degrees of granularity--which encompass the dynamics of relevant cells, cytokines, and the resulting global tissue dysfunction--in order to begin to unravel these inflammatory interactions. ⋯ The ABMs that describe the interrelationship between inflammation and wound healing yielded insights into intestinal healing in necrotizing enterocolitis, vocal fold healing during phonotrauma, and skin healing in the setting of diabetic foot ulcers. Modeling may help in understanding the complex interactions among the components of inflammation and response to stress, and therefore aid in the development of novel therapies and diagnostics.