Lasers in medical science
-
Lasers in medical science · Jan 2014
Randomized Controlled TrialEvaluation of low-level laser therapy effectiveness on the pain and masticatory performance of patients with myofascial pain.
This study investigated the effect of low-level laser therapy (LLLT) on the masticatory performance (MP), pressure pain threshold (PPT), and pain intensity in patients with myofascial pain. Twenty-one subjects, with myofascial pain according to Research Diagnostic Criteria/temporomandibular dysfunction, were divided into laser group (n = 12) and placebo group (n = 9) to receive laser therapy (active or placebo) two times per week for 4 weeks. The measured variables were: (1) MP by analysis of the geometric mean diameter (GMD) of the chewed particles using Optocal test material, (2) PPT by a pressure algometer, and (3) pain intensity by the visual analog scale (VAS). ⋯ A reduction in the GMD of crushed particles (p < 0.01) and an increase in PPT (p < 0.05) were seen only in the laser group when comparing the baseline and end-of-treatment values. Both groups showed a decrease in pain intensity at the end of treatment. LLLT promoted an improvement in MP and PPT of the masticatory muscles.
-
Lasers in medical science · Jan 2014
Comparative StudyEffect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice.
Low-level laser (light) therapy (LLLT) promotes wound healing, reduces pain and inflammation, and prevents tissue death. Studies have explored the effects of various radiant exposures on the effect of LLLT; however, studies of wavelength dependency in in vivo models are less common. In the present study, the healing effects of LLLT mediated by different wavelengths of light in the red and near-infrared (NIR) wavelength regions (635, 730, 810, and 980 nm) delivered at constant fluence (4 J/cm(2)) and fluence rate (10 mW/cm(2)) were evaluated in a mouse model of partial-thickness dermal abrasion. ⋯ Significant acceleration of re-epithelialization and cellular proliferation revealed by immunofluorescence staining for cytokeratin-14 and proliferating cell nuclear antigen (p < 0.05) was evident in the 810-nm wavelength compared with other groups. Photobiomodulation mediated by red (635 nm) and NIR (810 nm) light suggests that the biological response of the wound tissue depends on the wavelength employed. The effectiveness of 810-nm wavelength agrees with previous publications and, together with the partial effectiveness of 635 nm and the ineffectiveness of 730 and 980 nm wavelengths, can be explained by the absorption spectrum of cytochrome c oxidase, the candidate mitochondrial chromophore in LLLT.
-
Lasers in medical science · Jan 2014
Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640 ± 20 nm) on the repair of third-degree burns in rats.
Recent studies have demonstrated the efficacy of coherent light therapy from the red region of the electromagnetic spectrum on the tissue-healing process. This study analysed the effect of non-coherent light therapy (light-emitting diode-LED) with or without silver sulfadiazine (sulpha) on the healing process of third-degree burns. In this study, 72 rats with third-degree burns were randomly divided into six groups (n = 12): Gr1 (control), Gr2 (non-contact LED), Gr3 (contact LED), Gr4 (sulfadiazine), Gr5 (sulfadiazine + non-contact LED) and Gr6 (sulfadiazine + contact LED). ⋯ The digital photometric and histomorphometric analyses were conducted after the burn occurred. The combination of sulpha and LED (contact or non-contact) improved the healing of burn wounds. These results demonstrate that the combination of silver sulfadiazine with LED therapy (λ = 640 ± 20 nm, 4 J/cm(2), without contact) improves healing of third-degree burn wounds, significantly reduces the lesion area and increases the granulation tissue, increases the number of fibroblasts, promotes collagen synthesis and prevents burn infections by accelerating recovery.