Perfusion
-
Methylprednisolone has been used for acute respiratory distress syndrome with variable results. Veno-venous extracorporeal membrane oxygenation use in acute respiratory distress syndrome has increased. Occasionally, both are used. We hypothesized that methylprednisolone could improve lung compliance and ease weaning from extracorporeal membrane oxygenation in acute respiratory distress syndrome patients. ⋯ Methylprednisolone may be associated with improved compliance in acute respiratory distress syndrome allowing for decannulation from veno-venous extracorporeal membrane oxygenation. High rates of infection are associated with methylprednisolone use in veno-venous extracorporeal membrane oxygenation. Further studies are required to identify appropriate patient selection for methylprednisolone use in patients on veno-venous extracorporeal membrane oxygenation.
-
Veno-arterial extracorporeal membrane oxygenation may be used to support patients with refractory cardiogenic shock. Many patients can be successfully weaned, the ability of some medications to facilitate weaning from veno-arterial extracorporeal membrane oxygenation were reported. To date, there are limited studies investigating the impact of levosimendan on veno-arterial extracorporeal membrane oxygenation weaning. The objective of this systematic review and meta-analysis was to assess the effects of levosimendan on successful weaning from veno-arterial extracorporeal membrane oxygenation and survival in adult patients with cardiogenic shock. ⋯ The use of levosimendan on adult patients with cardiogenic shock may facilitate the veno-arterial extracorporeal membrane oxygenation weaning and reduce all-cause mortality. Few articles of this topic are available, and prospective, randomized multi-center trials are warranted to conclude decisively on the benefits of levosimendan in this setting.
-
During extracorporeal membrane oxygenation, the large contact surface between the blood and the extracorporeal circuit causes a continuous activation of coagulation and inflammation. Unfractionated heparin, a glycosaminoglycan that must bind to antithrombin as a cofactor, is currently the standard anticoagulant adopted during extracorporeal membrane oxygenation. Antithrombin, beyond being a potent natural anticoagulant, acts in the cross-talk between coagulation and inflammatory system through anticoagulation and coagulation-independent effects. ⋯ Antithrombin use in veno-venous extracorporeal membrane oxygenation should be investigated on the threshold for supplementation, dose, and time of administration.