Epilepsy research
-
Temporal lobe resection for epilepsy involves a risk of damaging the anterior part of the optic radiation, Meyer's loop, causing a contralateral upper quadrant visual field defect. This study aims to assess the intersubject variability in the course of Meyer's loop in vivo by diffusion tensor imaging and tractography. ⋯ Meyer's loop has a considerable variability in its anterior extent. Tractography may be a useful method to visualize Meyer's loop, and assess the risk of a visual field defect, prior to temporal lobe resection.
-
Occipital lobe epilepsy is uncommon in epilepsy surgery series and often difficult to assess due to rapid seizure propagation, misleading seizure semiology and confounding interictal epileptiform activity. Ictal recordings with surface electrodes may not define properly the seizure onset zone in surgical evaluation for intractable occipital epilepsy. Specially in dysplastic lesions, the extension of the epileptogenic zone is not well defined by neuroimaging techniques, therefore, implantation of intracranial electrodes is often indicated. In this study we present our experience with individually tailored resections of occipital lobe epileptic foci guided by monitoring with subdural electrodes. ⋯ This series of occipital lobe epilepsy surgery shows that, even in patients with cortical dysplasias, restricted resections may have a good outcome and that intracranial monitoring is usually necessary in order to design an individually tailored resection.