Critical care nursing quarterly
-
To succeed in today's challenging healthcare environment, hospitals must examine their impact on customers--patients and families--staff and physicians. By using competitive facility design and incorporating evidence-based concepts such as the acuity adaptable care delivery model and the universal room, the hospital will realize an impact on patient satisfaction that will enhance market share, on physician satisfaction that will foster loyalty, and on staff satisfaction that will decrease turnover. ⋯ This article will review key design elements that support the success of an acuity adaptable unit such as the use of a private room with zones dedicated to patients, families, and staff, healing environment, technology, and decentralized nursing stations that support the success of the acuity adaptable unit. Outcomes of institutions currently utilizing the acuity adaptable concept will be reviewed.
-
This article reports a study of the physical design characteristics of a set of adult intensive care units (ICUs), built between 1993 and 2003. These ICUs were recognized as the best-practice examples by the Society of Critical Care Medicine, the American Association of Critical Care Nurses, and the American Institute of Architects. ⋯ Some of these negative characteristics are offset by the following positive characteristics in most ICUs: (1) they have only private patient rooms for improved patient care, safety, privacy, and comfort; (2) most patient beds are freestanding for easy access to patients from all sides; (3) they have handwashing sinks and waste disposal facilities in the patient room for improved safety; and (4) most patient rooms have natural light to help patients with circadian rhythms. The article discusses, in detail, the implications of its findings, and the role of the ICU design community in a very complicated design context.
-
There is a vast array of technical data that is continuously generated within the intensive care unit environment. In addition to physiological monitors, there is information being captured by the ventilator, intravenous infusion pumps, medication dispensing units, and even the patient's bed. The ability to retrieve and synchronize data is essential for both clinical documentation and real-time problem solving for individual patients and the intensive care unit population as a whole. ⋯ In addition, many bedside monitors and devices have alarms systems that must be evaluated throughout the workday, and actions taken on the basis of the patient's condition and other data. It is obvious that the complexity within such care processes presents many potential opportunities for overlooking important details. The capability to systematically and logically link physiological monitors and other selected data sets into a cohesive dashboard system holds tremendous promise for improving care quality, patient safety, and clinical outcomes in the intensive care unit.