Free radical biology & medicine
-
Free Radic. Biol. Med. · May 2001
Oxidative stress causes nuclear factor-kappaB activation in acute hypovolemic hemorrhagic shock.
Nuclear Factor kappaB (NFkappaB) is an ubiquitous rapid response transcription factor involved in inflammatory reactions and exerts its action by expressing cytokines, chemokines, and cell adhesion molecules. We investigated the role of NF-kappaB in acute hypovolemic hemorrhagic (Hem) shock. Hem shock was induced in male anesthetized rats by intermittently withdrawing blood from an iliac catheter over a period of 20 min (bleeding period) until mean arterial blood pressure (MAP) fell and stabilized within the range of 20-30 mmHg. ⋯ Furthermore IRFI-042 increased survival time (117.8 +/- 6.51 min; p <.01) and survival rate (vehicle = 0% and IRFI-042 = 80%, at 120 min after the end of bleeding), reverted the marked hypotension, decreased liver mRNA for TNF-alpha, reduced plasma TNF-alpha (21 +/- 4.3 pg/ml), and restored to control values the hypo-reactivity to PE. Our results suggest that acute blood loss (50% of the estimated total blood volume over a period of 20 min) causes early activation of NF-kappaB, likely through an increased production of reactive oxygen species. This experiment indicates that NF-kappaB-triggered inflammatory cascade becomes early activated during acute hemorrhage even in the absence of resuscitation procedures.