Neurotoxicology and teratology
-
Neurotoxicol Teratol · May 1996
Review Comparative StudyDevelopmental neurotoxicity of PCBs in humans: what do we know and where do we go from here?
The potential neurotoxicity of PCBs was first recognized in 1968 when a number of Japanese people became ill after ingesting rice oil that was contaminated with PCBs during the manufacturing process (Yusho). Later a similar exposure occurred in Taiwan (YuCheng). Children born to Taiwanese mothers who consumed PCB-contaminated rice oil were followed and a number of developmental abnormalities, including lower body weight and height, higher activity levels, greater incidence of behavior problems, and lower IQ scores, were observed. ⋯ However, it is not clear that these shortcomings can explain the discrepancies between their findings and those of Rogan and Gladen. Other possible explanations include differences in exposure levels or PCB congener patterns between the two cohorts, differences in sociodemographic variables between the two cohorts, or other problems inherent in trying to detect subtle neuropsychological deficits at exposure levels that are near the threshold for effects. Hopefully, several new studies that are currently underway will help to resolve the uncertainties regarding the risks of perinatal PCB exposure that have been created by the conflicting results of these early studies.
-
Neurotoxicol Teratol · May 1996
Review Comparative StudyEpidemiologic perspective of the developmental neurotoxicity of PCBs in humans.
-
Neurotoxicol Teratol · May 1996
Review Comparative StudyCan epidemiological studies discern subtle neurological effects due to perinatal exposure to PCBs?
What conclusions can be drawn concerning the potential neurological effects of perinatal exposure to either PCBs, or PCBs and other fish-borne contaminants? First, by their very nature epidemiological studies are limited in their ability to detect subtle associations--including possible links between exposure to low levels of environmental contaminants and disease. As stated by Dr. Schantz, both Rogan and the Jacobsons report small changes in motor and cognitive behavior--typically less than one-half of a standard deviation--and only in the most highly exposed children. ⋯ In light of the above statements, future epidemiological studies should focus on highly exposed susceptible populations such as occupationally exposed workers or the aged. Results from these studies would provide important information on the risk of perinatal or adult exposure to PCBs in susceptible populations, although generalization of results obtained in these populations to the general population may be fraught with difficulties. Finally, because of the limitations of epidemiological studies, particularly those studying fish-eating populations, future risk assessments should depend more heavily on laboratory derived data, including studies in nonhuman primates exposed to environmentally relevant mixtures and relevant doses of PCB congeners and other known or suspected neurotoxicants.