Oncogene
-
Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer.
Reduced expression of the CDK inhibitor p27(Kip1) (p27) in human lung cancer correlates with tumor aggressiveness and poor prognosis. However, the regulation of p27 expression and the role of p27 during lung cancer are poorly understood. Urethane-induced lung tumors in mice frequently harbor mutations in the Kras oncogene, and in this study, we use this model to address the regulation of p27 during tumorigenesis. ⋯ Germline p27 deficiency accelerated both the growth and malignant progression of urethane-induced lung tumors, and did so in a cell autonomous manner, confirming a causal role of p27 in tumor suppression. These results show that p27 is a potent barrier to the growth and malignant progression of Kras-initiated lung tumors. Further, the reduction of nuclear p27 in tumors is mediated by oncogene signaling pathways, which can be reversed by pharmacological agents.