Oncogene
-
Angiogenesis is controlled positively or negatively by extrinsic and intrinsic molecular cues in endothelial cells (ECs); in the tumor microenvironment, the action of positive regulators exceeds that of negative regulators. Thus, overinduction of negative regulators may inhibit tumor angiogenesis. MicroRNAs (miRNAs or miRs) are endogenous short noncoding RNAs regulating gene expression either through translational inhibition or destabilization of target mRNA. ⋯ It has been suggested that pro-angiogenic signals in ECs also upregulate anti-angiogenic molecules simultaneously via negative feedback. Because miR-125b induction in ECs is transient after pro-angiogenic stimulation, prolonged overexpression of miR-125b could result in blood vessel regression. Thus, miR-125b may be useful in cancer therapy by causing the collapse of the lumen of ECs.
-
The hypothesis of cancer stem cells has been proposed to explain the therapeutic failure in a variety of cancers including lung cancers. Previously, we demonstrated acquisition of epithelial-mesenchymal transition, a feature highly reminiscent of cancer stem-like cells, in gefitinib-resistant A549 cells (A549/GR). Here, we show that A549/GR cells contain a high proportion of CXCR4+ cells that are responsible for having high potential of self-renewal activity in vitro and tumorigenicity in vivo. ⋯ FACS-sorted CXCR4+ A549/GR cells formed many large spheres, had self-renewal capacity, demonstrated radiation resistance in vitro and exhibited stronger tumorigenic potential in vivo than CXCR4- cells. Lentiviral-transduction of CXCR4 enhanced sphere formation and tumorigenicity in H460 and A549 cells, whereas introduction of siCXCR4 suppressed these activities in A549/GR cells. Our data indicate that CXCR4+ NSCLC cells are strong candidates for tumorigenic stem-like cancer cells that maintain stemness through a CXCR4-medated STAT3 pathway and provide a potential therapeutic target for eliminating these malignant cells in NSCLC.