Oncogene
-
In clear-cell renal cell carcinoma (ccRCC), inactivation of the tumor suppressor von Hippel-Lindau (VHL) occurs in the majority of the tumors and is causal for the pathogenesis of ccRCC. Recently, a large-scale genomic sequencing study of ccRCC tumors revealed that enzymes that regulate histone H3 lysine 4 trimethylation (H3K4Me3), such as JARID1C/KDM5C/SMCX and MLL2, were mutated in ccRCC tumors, suggesting that H3K4Me3 might have an important role in regulating gene expression and tumorigenesis. In this study we report that in VHL-deficient ccRCC cells, the overall H3K4Me3 levels were significantly lower than that of VHL+/+ counterparts. ⋯ Although HIF2α is an oncogene in ccRCC, some of its targets might have tumor suppressive activity. Consistent with this, knockdown of JARID1C in 786-O VHL-/- ccRCC cells significantly enhanced tumor growth in a xenograft model, suggesting that JARID1C is tumor suppressive and its mutations are tumor promoting in ccRCC. Thus, VHL inactivation decreases H3K4Me3 levels through JARID1C, which alters gene expression and suppresses tumor growth.
-
Casein kinase 1 delta and epsilon (CK1δ/ɛ) are key regulators of diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. Recent studies suggest that they have an important role in oncogenesis. RNA interference screens identified CK1ɛ as a pro-survival factor in cancer cells in vitro and the CK1δ/ɛ-specific inhibitor IC261 is remarkably effective at selective, synthetic lethal killing of cancer cells. ⋯ In a stepwise transformation model, IC261-induced killing required both overactive Ras and inactive p53. IC261 binds to tubulin with an affinity similar to colchicine and is a potent inhibitor of microtubule polymerization. This activity accounts for many of the diverse biological effects of IC261 and, most importantly, for its selective cancer cell killing.
-
Transforming growth factor (TGF)-β1 has biphasic functions in prostate tumorigenesis, having a growth-inhibitory effect in the early stages, but in the late stages promoting tumor angiogenesis and metastasis. We demonstrate here that tumor-producing TGF-β1 induces vascular endothelial growth factor (VEGF) in prostate cancer cells, and hypoxia-inducible factor (HIF)-1α and HIF-2α has opposite functions in TGF-β1 regulation of VEGF expression under non-hypoxic conditions. The promoter response of VEGF to TGF-β1 was upregulated by the transfection of HIF-2α or siHIF-1α but downregulated by HIF-1α and siHIF-2α. ⋯ Additionally, TGF-β1 was found to increase the stability of VEGF transcript by facilitating the cytoplasmic translocation of a RNA-stabilizing factor HuR. Collectively, our data show that tumor-producing TGF-β1 induces VEGF at the both transcription and post-transcriptional levels through multiple routes including Smad3, HIF-2α and HuR. This study thus suggests that autocrine TGF-β1 production may contribute to tumor angiogenesis via HIF-2α signaling under non-hypoxic conditions, providing a selective growth advantage for prostate tumor cells.
-
KRAS mutation is a predictive biomarker for resistance to cetuximab (Erbitux) in metastatic colorectal cancer (mCRC). This study sought to determine if KRAS mutant CRC lines could be sensitized to cetuximab using dasatinib (BMS-354825, Sprycel), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases (SFKs). We analyzed 16 CRC lines for: (1) KRAS mutation status, (2) dependence on mutant KRAS signaling and (3) expression level of epidermal growth factor receptor (EGFR) and SFKs. ⋯ The data presented in this study indicate that dasatinib can sensitize KRAS mutant CRC tumors to cetuximab and may do so by altering the activity of several key signaling pathways. Furthermore, these results suggest that signaling via EGFR and SFKs may be necessary for cell proliferation and survival of KRAS mutant CRC tumors. These data strengthen the rationale for clinical trials combining cetuximab and dasatinib in the KRAS mutant CRC genetic setting.
-
The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation.
Recently, the orphan receptor G protein-coupled receptor 55 (GPR55) has been proposed as a potential cannabinoid receptor, although controversy remains on its physiological roles. Current evidence suggests a role for GPR55 as a receptor for the lysophospholipid lysophosphatidylinositol (LPI). In this study, we show that GPR55 is expressed in several prostate and ovarian cancer cell lines, both at the mRNA and at the protein level, and that it has a critical role in regulating proliferation and anchorage-independent growth. ⋯ We further identify an autocrine loop by which LPI is synthesized by cytosolic phospholipase A2, pumped out of the cell by the ATP-binding cassette transporter ABCC1/MRP1, and is then able to initialize cascades downstream of GPR55. All together, these data demonstrate a role of LPI and its receptor GPR55 in cancer cells in activating an autocrine loop that regulates cell proliferation. These findings may have important implications for LPI as a novel cancer biomarker and for its receptor GPR55 as a potential therapeutic target.