Toxicology in vitro : an international journal published in association with BIBRA
-
(-)-epigallocatechin-3-gallate (EGCG), the main component of green tea, has long been explored in the treatment and/or prevention of central nervous system (CNS) disorders. However, EGCG has been recently shown to exhibit acute and subacute toxicity. Although a lot of work has been done, the mechanisms of EGCG-induced mitochondrial dysfunction has not been delineated in primary astrocyte. ⋯ As a result, mitochondrial dysfunction was induced, including the opening of the mitochondrial permeability transition pore (mPTP), mitochondrial membrane depolarization, an increasing in reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Therefore, more apoptotic cells were observed in 50 μM EGCG group than that of in 1 μM EGCG group. These findings suggested that a high dose of EGCG was toxic to astrocytes partly by targeting mitochondria via calcium pathway, which would extend our understanding of the toxicity of EGCG and the underlying mechanisms.